Recent advances in the genetic engineering of the Leishmania parasite and anti-cancer properties

Document Type : Review Article

Authors

1 Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

3 Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

4 Department of Medical Biotechnology, Faculty of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran

10.22038/ijbms.2025.87919.18992

Abstract

Leishmaniasis is a tropical disease caused by Leishmania species, affecting millions of people worldwide and contributing to substantial morbidity and mortality. Advances in genetic engineering technologies, particularly CRISPR/Cas9, plasmid shuffling, and DiCre-based systems, have significantly enhanced our understanding of Leishmania biology. These approaches have enabled precise gene editing, functional analysis of essential genes, and the development of genetically attenuated strains with potential applications in vaccine design and drug discovery. Gene editing tools have also allowed the identification of key virulence factors and pathways involved in parasite survival and modulation of the host immune system. These insights have opened new directions for therapeutic strategies against leishmaniasis. Interestingly, recent findings highlight notable similarities between leishmaniasis and cancer, including immune checkpoint involvement, chronic inflammation, and shared molecular targets. Leishmania’s ability to influence host immune responses and epigenetic mechanisms mirrors certain cancer-related processes. Moreover, compounds originally developed for cancer treatment, such as miltefosine and topoisomerase inhibitors, have shown effectiveness against Leishmania, supporting the potential for cross-applications. This review outlines recent developments in Leishmania genetic engineering and explores how these advancements can contribute to both anti-leishmanial and anti-cancer therapies. By emphasizing overlapping biological pathways and therapeutic targets, this work suggests innovative approaches to address two major global health challenges.

Keywords

Main Subjects


1. Rahim Awab G. Leishmaniasis Epidemiology and Psychosocial Aspect [Internet]. Leishmania parasites - Epidemiology, Immunopathology and Hosts. IntechOpen; 2023. 
2. Monroy-Ostria A, Nasereddin A, Monteon VM, Guzman-Bracho C, Jaffe CL. ITS1 PCR-RFLP diagnosis and characterization of Leishmania in clinical samples and strains from cases of human cutaneous leishmaniasis in states of the Mexican Southeast. Interdiscip Perspect Infect Dis 2014; 2014: 607287.
3. Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet 2005; 366: 1561–1577.
4. Abadias-Granado I, Diago A, Cerro PA, Palma-Ruiz AM, Gilaberte Y. Cutaneous and mucocutaneous leishmaniasis. Actas Dermosifiliogr 2021; 112: 601–618.
5. Mann S, Frasca K, Scherrer S, Henao-Martinez AF, Newman S, Ramanan P, et al. A review of leishmaniasis: Current knowledge and future directions. Curr Trop Med Rep 2021; 8: 121–132.
6. Ghatee MA, Taylor WR, Karamian M. The geographical distribution of cutaneous leishmaniasis causative agents in Iran and its neighboring countries, a review. Front Public Health 2020; 8:11-23.
7. Pandey SC, Jha A, Kumar A, Samant M. Evaluation of antileishmanial potential of computationally screened compounds targeting DEAD-box RNA helicase of Leishmania donovani. Int J Biol Macromol 2019; 121: 480–487.
8. Titus RG, Gueiros-Filho FJ, de Freitas LA, Beverley SM. Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci U S A 1995; 92: 10267–10271.
9. Solana JC, Ramírez L, Corvo L, de Oliveira CI, Barral-Netto M, Requena JM, et al. Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against Leishmania major infection in two mice models. PLoS Negl Trop Dis 2017; 11: e0005644.
10. Sarkar D, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME. Epigenetic regulation in human melanoma: Past and future. Epigenetics 2015; 10: 103–121.
11. Afrin F, Khan I, Hemeg HA. Leishmania-host interactions-an epigenetic paradigm. Front Immunol 2019; 10: 492-500.
12. Dacher M, Tachiwana H, Horikoshi N, Kujirai T, Taguchi H, Kimura H, et al. Incorporation and influence of Leishmania histone H3 in chromatin. Nucleic Acids Res 2019;47:11637–1148.
13. Kumar R, Chauhan SB, Ng SS, Sundar S, Engwerda CR. Immune checkpoint targets for host-directed therapy to prevent and treat leishmaniasis. Front Immunol 2017; 8: 1492-1505.
14. Viana AG, Magalhães LMD, Giunchetti RC, Dutra WO, Gollob KJ. Leishmania infantum induces expression of the negative regulatory checkpoint, CTLA-4, by human naïve CD8+ T cells. Parasite Immunol 2019; 41: e12659.
15. Sherman M, Multhoff G. Heat shock proteins in cancer. Ann N Y Acad Sci 2007; 1113: 192–201.
16. Kang SM, Kim SJ, Kim JH, Lee W, Kim GW, Lee KH, et al. Interaction of hepatitis C virus core protein with Hsp60 triggers the production of reactive oxygen species and enhances TNF-alpha-mediated apoptosis. Cancer Lett 2009; 279: 230–237.
17. Batista FAH, Ramos SL, Tassone G, Leitão A, Montanari CA, Botta M, et al. Discovery of small molecule inhibitors of Leishmania braziliensis Hsp90 chaperone. J Enzyme Inhib Med Chem 2020; 35: 639–649.
18. Palma LC, Ferreira L, Petersen A, Dias BRS, Menezes JPB, Moreira DRM, et al. A docking-based structural analysis of geldanamycin-derived inhibitor binding to human or Leishmania Hsp90. Sci Rep 2019; 9: 14756.
19. Sundar S, Olliaro PL. Miltefosine in the treatment of leishmaniasis: Clinical evidence for informed clinical risk management. Ther Clin Risk Manag 2007; 3: 733–740.
20. Jaffe C, Miguel DC, Yokoyama-Yasunaka JKU, Uliana SRB. Tamoxifen is effective in the treatment of Leishmania amazonensis infections in mice. PLoS Negl Trop Dis 2008; 2: e249.
21. Wang J, Wang Y, Wang Y, Ma Y, Lan Y, Yang X, et al. Tamoxifen inhibits macrophage function in Leishmania major infection. Parasitol Res 2020; 119: 2015–2022.
22. Pereira BAS, Ribeiro-Dos-Santos R. Evolution of DNA vaccines against leishmaniasis: A review. Mem Inst Oswaldo Cruz 2018; 113: e170391.
23. Handman E. Leishmaniasis: Current status of vaccine development. Clin Microbiol Rev 2001; 14: 229–43.
24. Araujo MS, de Andrade RA, Fiuza JA, Andrade Júnior HF, de Almeida RP, Guerrant RL, et al. Gravidity and parasite dose impact Leishmania vaccine efficacy. Mem Inst Oswaldo Cruz 2020; 115: e190380.
25. Coler RN, Duthie MS, Hofmeyer KA, Guderian J, Jayashankar L, Vergara J, et al. From mouse to man: Safety, immunogenicity and efficacy of a candidate leishmaniasis vaccine LEISH-F3+GLA-SE. Clin Transl Immunology 2015; 4: e35.
26. Ghorbani M, Farhoudi R. Leishmaniasis in humans: Drug or vaccine therapy? Drug Des Devel Ther 2018; 12: 25–40.
27. Rijal S, Ostyn B, Uranw S, Rai K, Bhattarai NR, Dorlo TPC, et al. Increasing failure of miltefosine in the treatment of kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin Infect Dis 2013; 56: 1530–1538.
28. Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev 2006; 19: 111–126.
29. Singh OP, Sundar S. Developments in diagnosis of visceral leishmaniasis in the elimination era. J Parasitol Res 2015; 2015: 239469.
30. Santos DCO, Costa CHN, Durães FV, Costa Silva FO, Batista AC, Pipolo AE, et al. Leishmania braziliensis and Leishmania infantum: Differences and similarities in the inflammatory response and progression to disease in mice. Exp Parasitol 2020; 211: 107852.
31. Alavizadeh SH, Shapouri R, Tafaghodi M. Immunization against leishmaniasis using PLGA nanospheres as a powerful adjuvant and delivery system. Nanomed J 2016; 3: 1–12.
32. Tomé M, Luk F, Pisitkun T, Turquette C, Möller A, Altevogt P, et al. In-depth analysis of the plasma extracellular vesicle proteome reveals novel biomarkers of ovarian cancer. Sci Rep 2020; 10: 12822.
33. Seyed N, Peters NC, Rafati S. Translating observations from leishmanization into non-living vaccines: The potential of dendritic cell-based vaccination strategies against leishmaniasis. Front Immunol 2018; 9: 1227-1236.
34. Maspi N, Abdoli A, Ghaffarifar F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: A review. Pathog Glob Health 2016; 110: 247–260.
35. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2002; 2: 845–858.
36. Tripathi P, Singh V, Naik S. Immune response to leishmania: Paradox rather than paradigm. FEMS Immunol Med Microbiol 2007; 51: 229–242.
37. Pawar A, Bhandari P, Sharma S, Sharma A, Sandhir R, Jadhav SE, et al. Pentamidine-capped gold nanoclusters: A novel approach for the treatment of leishmaniasis. Int J Pharm 2019; 554: 326–337.
38. Chakravarty J, Sundar S. Drug resistance in leishmaniasis. J Glob Infect Dis 2010; 2: 167–176.
39. Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis 2016; 10: e0004349.
40. Sundar S, Chakravarty J. An update on pharmacotherapy for leishmaniasis. Expert Opin Pharmacother 2015; 16: 237–252.
41. Monge-Maillo B, López-Vélez R. Therapeutic options for old world cutaneous leishmaniasis and new world cutaneous and mucocutaneous leishmaniasis. Drugs 2013; 73: 1889–1920.
42. Croft SL, Olliaro P. Leishmaniasis chemotherapy—challenges and opportunities. Clin Microbiol Infect 2011; 17: 1478–1483.
43. Doroodgar A, Doroodgar M. Leishmaniasis in the world and in Iran: status, problems and efforts to control it. Res J Med Sci 2012; 6: 251–257.
44. Kedzierski L. Leishmaniasis vaccine: where are we today? J Glob Infect Dis 2010; 2: 177–185.
45. Verma S, Dey CS. Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 2004; 48: 3010–3015.
46. Kaye P, Scott P. Leishmaniasis: Complexity at the host–pathogen interface. Nat Rev Microbiol 2011; 9: 604–615.
47. Pace D. Leishmaniasis. J Infect 2014; 69: S10–S18.
48. Bañuls AL, Hide M, Prugnolle F. Leishmania and the leishmaniases: A parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv Parasitol 2007; 64: 1–109.
49. McGwire BS, Satoskar AR. Leishmaniasis: Clinical syndromes and treatment. QJM 2014; 107: 7–14.
50. Elmahallawy EK, Sampedro Martínez A, Rodríguez-Granger J, Hoyos-Mallecot Y, Navarro Mari JM, Gutiérrez Fernández J. Diagnosis of leishmaniasis. J Infect Dev Ctries 2014; 8: 961–972.
51. Ashford RW. The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol 2000; 30: 1269–1281.
52. Nylén S, Gautam S. Immunological perspectives of leishmaniasis. J Glob Infect Dis 2010; 2: 135–146.
53. Mohebali M. Visceral leishmaniasis in Iran: Review of the epidemiological and clinical features. Iran J Parasitol 2013; 8: 348–358.
54. Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis 2016; 10: e0004349.
55. Ashkani J, Rees HH. Metabolic pathways in Leishmania parasites and their role in drug targeting. J Parasitol Res 2015; 2015: 534062.
56. Selvapandiyan A, Dey R, Nylen S, Duncan R, Sacks D, Nakhasi HL. Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis. J Immunol 2009; 183: 1813–1820.
57. Kumar R, Bumb RA, Salotra P. Correlation of parasitic load in lesion tissues with clinical features and immune responses in Indian kala-azar. Clin Microbiol Infect 2010; 16: 1191–1195.
58. No JH, Kim YB, Song YS. Targeted therapy in ovarian cancer. Biomol Ther (Seoul) 2011; 19: 1–10.
59. Ghaffarifar F, Dalimi A, Sharifi Z, Jaffe CL. Evaluation of immune response in BALB/c mice immunized with gene encoding cysteine proteinase of Leishmania major. Iran J Parasitol 2006; 1: 41–48.
60. Bogdan C, Rollinghoff M. The immune response to Leishmania: mechanisms of parasite control and evasion. Int J Parasitol 1998; 28: 121–134.
61. Maspi N, Abdoli A, Ghaffarifar F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: A review. Pathog Glob Health 2016; 110: 247–260.
62. Goto H, Lindoso JA. Immunity and immunosuppression in leishmaniasis. J Infect Dev Ctries 2010; 4: 655–659.
63. Singh OP, Hasker E, Boelaert M, Sundar S. Leishmaniasis treatment—a review of clinical trials. Trans R Soc Trop Med Hyg 2016; 110: 99–110.
64. Sacks D. The role of T cells in the immunopathogenesis of leishmaniasis. Curr Opin Immunol 1997; 9: 444–449.
65. Prates DB, Coutinho CM, Rocha FAE, Figueiredo RC, Torres-Santos EC. Immunity and immunosuppression in leishmaniasis. J Infect Dev Ctries 2010; 4: 655–659.
66. Handman E, Bullen DV. Interaction of Leishmania with the host macrophage. Trends Parasitol 2002; 18: 332–334.
67. Pérez-Jeldres T, Torres-Montero V, Paredes R, Palma G, Caldera-Miranda MV. Leishmaniasis: An update on disease pathogenesis and treatment. Microb Pathog 2017; 110: 128–136.
68. Melby PC, Tryon VV, Chandrasekar B. Immunology and immunotherapy of  leishmaniasis. In: Farrell JP, editor. Immunology of Protozoan Parasites. Boca Raton: CRC Press; 2002. p. 245–71.
69. Sundar S, Rai M. Laboratory diagnosis of visceral leishmaniasis. Clin Diagn Lab Immunol 2002;9:951–958.
70. Bogdan C. The role of nitric oxide in innate immunity. Immunol Lett 2001;79:99–103.
71. Gomes NA, Farias LP, Guimarães LH, Carvalho EM. Immunity to Leishmania and the rational search for vaccines against leishmaniasis. Front Immunol 2014;5:299.
72. Brodskyn CI, de Oliveira CI. Immune mechanisms in cutaneous leishmaniasis: the role of parasite persistence. Parasite Immunol 2015;37:199–208.
73. Singh OP, Hasker E, Boelaert M, Sundar S. Treatment of visceral leishmaniasis: Past and present. Curr Opin Infect Dis 2014;27:415–421.
74. Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev 2006;19:111–126.
75. Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis 2017;11:e0006052.
76. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012;7:e35671.
77. World Health Organization. Control of the leishmaniases. World Health Organ Tech Rep Ser 2010;949:1–186.
78. Petersen CA, Guerra MV. Vaccine development against leishmaniasis: Challenges and recent developments. Expert Rev Vaccines 2017;16:1135–1146.
79. Dey R, Natarajan G, Bhattacharjee S, Bhattacharyya MK. Vaccines against leishmaniasis. Indian J Med Res 2016;144:454–464.
80. Alexander J, Bryson K. T helper (h)1/Th2 and Leishmania: Paradox rather than paradigm. Immunol Lett 2005;99:17–23.
81. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2002;2:845–858.
82. Kaye PM, Scott P. Leishmaniasis: Complexity at the host–pathogen interface. Nat Rev Microbiol 2011;9:604–615.
83. Engwerda CR, Kaye PM. Organ-specific immune responses associated with infectious disease. Immunol Today 2000; 21: 73–78.
84. McMahon-Pratt D, Alexander J. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev 2004; 201: 206–224.
85. Lira R, Sundar S, Makharia A, Kenney R, Gam A, Fairlamb AH, et al. Evidence that the high-affinity pentavalent antimonial-resistant Leishmania donovani isolates exhibit cross-resistance to miltefosine and amphotericin B. Antimicrob Agents Chemother 2012; 56: 1224–1233.
86. Sundar S, Chakravarty J. An update on pharmacotherapy for leishmaniasis. Expert Opin Pharmacother 2015; 16: 237–252.
87. Dey R, Bhattacharjee S, Haldar AK, Bhattacharyya MK. Recent advances in chemotherapy of visceral leishmaniasis. Expert Opin Investig Drugs 2012; 21: 1111–1124.
88. Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 2012; 67: 2576–2597.
89. Gupta S, Dube A, Srivastava A, Singh N, Negi NS, Singh S. Leishmaniasis: Current status of diagnosis and treatment. J Postgrad Med 2007; 53: 112–117.
90. Ponte-Sucre A. Miltefosine resistance in Leishmania donovani. Int J Antimicrob Agents 2011; 38: 437–443.
91. Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci 2017; 4: 170095.
92. Abdi Ghavidel A, Aghamiri S, Raee P, Mohammadi-Yeganeh S, Noori E, Bandehpour M, et al. Recent advances in CRISPR/Cas9-mediated genome editing in Leishmania strains. Acta Parasitol 2024; 69: 121–134.
93. Engstler M, Beneke T. Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit. Elife 2023; 12: e85605.
94. Ayala A, Llanes A, Lleonart R, Restrepo CM. Advances in Leishmania vaccines: Current development and future prospects. Pathogens 2024; 13: 812-829.
95. de Freitas e Silva R, Von Stebut E. Unraveling the role of immune checkpoints in leishmaniasis. Front Immunol 2021; 12: 620144.
96. Berhe H, Kumar Cinthakunta Sridhar M, Zerihun M, Qvit N. The potential use of peptides in the fight against chagas disease and leishmaniasis. Pharmaceutics 2024; 16: 227-267.
97. Oualha R, Abdelkrim YZ, Guizani I, Harigua-Souiai E. Approved drugs successfully repurposed against Leishmania based on machine learning predictions. Front Cell Infect Microbiol 2024; 14: 1403589.
98. Damasceno JD, Reis-Cunha J, Crouch K, Beraldi D, Lapsley C, Tosi LR, et al. Conditional knockout of RAD51-related genes in Leishmania major reveals a critical role for homologous recombination during genome replication. PLoS Genet 2020; 16: e1008828.
99. Beneke T, Gluenz E. LeishGEdit: A method for rapid gene knockout and tagging using CRISPR-Cas9. In: Leishmania: Methods and Protocols. Springer; 2019. p. 189–210.
100. May NH, Cao A, Schmid A, Link F, Arias-del-Angel J, Meiser E, Beneke T. Improved base editing and functional screening in Leishmania via co-expression of the AsCas12a ultra variant, a T7 RNA polymerase, and a cytosine base editor. Elife 2025; 13: RP97437.
101. Lye L-F, Owens KL, Jang S, Marcus JE, Brettmann EA, Beverley SM. An RNA interference (RNAi) toolkit and its utility for functional genetic analysis of Leishmania (Viannia). Genes 2022; 14: 93-109.