1. Rahim Awab G. Leishmaniasis Epidemiology and Psychosocial Aspect [Internet]. Leishmania parasites - Epidemiology, Immunopathology and Hosts. IntechOpen; 2023.
2. Monroy-Ostria A, Nasereddin A, Monteon VM, Guzman-Bracho C, Jaffe CL. ITS1 PCR-RFLP diagnosis and characterization of Leishmania in clinical samples and strains from cases of human cutaneous leishmaniasis in states of the Mexican Southeast. Interdiscip Perspect Infect Dis 2014; 2014: 607287.
3. Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet 2005; 366: 1561–1577.
4. Abadias-Granado I, Diago A, Cerro PA, Palma-Ruiz AM, Gilaberte Y. Cutaneous and mucocutaneous leishmaniasis. Actas Dermosifiliogr 2021; 112: 601–618.
5. Mann S, Frasca K, Scherrer S, Henao-Martinez AF, Newman S, Ramanan P, et al. A review of leishmaniasis: Current knowledge and future directions. Curr Trop Med Rep 2021; 8: 121–132.
6. Ghatee MA, Taylor WR, Karamian M. The geographical distribution of cutaneous leishmaniasis causative agents in Iran and its neighboring countries, a review. Front Public Health 2020; 8:11-23.
7. Pandey SC, Jha A, Kumar A, Samant M. Evaluation of antileishmanial potential of computationally screened compounds targeting DEAD-box RNA helicase of Leishmania donovani. Int J Biol Macromol 2019; 121: 480–487.
8. Titus RG, Gueiros-Filho FJ, de Freitas LA, Beverley SM. Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci U S A 1995; 92: 10267–10271.
9. Solana JC, Ramírez L, Corvo L, de Oliveira CI, Barral-Netto M, Requena JM, et al. Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against Leishmania major infection in two mice models. PLoS Negl Trop Dis 2017; 11: e0005644.
10. Sarkar D, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME. Epigenetic regulation in human melanoma: Past and future. Epigenetics 2015; 10: 103–121.
11. Afrin F, Khan I, Hemeg HA. Leishmania-host interactions-an epigenetic paradigm. Front Immunol 2019; 10: 492-500.
12. Dacher M, Tachiwana H, Horikoshi N, Kujirai T, Taguchi H, Kimura H, et al. Incorporation and influence of Leishmania histone H3 in chromatin. Nucleic Acids Res 2019;47:11637–1148.
13. Kumar R, Chauhan SB, Ng SS, Sundar S, Engwerda CR. Immune checkpoint targets for host-directed therapy to prevent and treat leishmaniasis. Front Immunol 2017; 8: 1492-1505.
14. Viana AG, Magalhães LMD, Giunchetti RC, Dutra WO, Gollob KJ. Leishmania infantum induces expression of the negative regulatory checkpoint, CTLA-4, by human naïve CD8+ T cells. Parasite Immunol 2019; 41: e12659.
15. Sherman M, Multhoff G. Heat shock proteins in cancer. Ann N Y Acad Sci 2007; 1113: 192–201.
16. Kang SM, Kim SJ, Kim JH, Lee W, Kim GW, Lee KH, et al. Interaction of hepatitis C virus core protein with Hsp60 triggers the production of reactive oxygen species and enhances TNF-alpha-mediated apoptosis. Cancer Lett 2009; 279: 230–237.
17. Batista FAH, Ramos SL, Tassone G, Leitão A, Montanari CA, Botta M, et al. Discovery of small molecule inhibitors of Leishmania braziliensis Hsp90 chaperone. J Enzyme Inhib Med Chem 2020; 35: 639–649.
18. Palma LC, Ferreira L, Petersen A, Dias BRS, Menezes JPB, Moreira DRM, et al. A docking-based structural analysis of geldanamycin-derived inhibitor binding to human or Leishmania Hsp90. Sci Rep 2019; 9: 14756.
19. Sundar S, Olliaro PL. Miltefosine in the treatment of leishmaniasis: Clinical evidence for informed clinical risk management. Ther Clin Risk Manag 2007; 3: 733–740.
20. Jaffe C, Miguel DC, Yokoyama-Yasunaka JKU, Uliana SRB. Tamoxifen is effective in the treatment of Leishmania amazonensis infections in mice. PLoS Negl Trop Dis 2008; 2: e249.
21. Wang J, Wang Y, Wang Y, Ma Y, Lan Y, Yang X, et al. Tamoxifen inhibits macrophage function in Leishmania major infection. Parasitol Res 2020; 119: 2015–2022.
22. Pereira BAS, Ribeiro-Dos-Santos R. Evolution of DNA vaccines against leishmaniasis: A review. Mem Inst Oswaldo Cruz 2018; 113: e170391.
23. Handman E. Leishmaniasis: Current status of vaccine development. Clin Microbiol Rev 2001; 14: 229–43.
24. Araujo MS, de Andrade RA, Fiuza JA, Andrade Júnior HF, de Almeida RP, Guerrant RL, et al. Gravidity and parasite dose impact Leishmania vaccine efficacy. Mem Inst Oswaldo Cruz 2020; 115: e190380.
25. Coler RN, Duthie MS, Hofmeyer KA, Guderian J, Jayashankar L, Vergara J, et al. From mouse to man: Safety, immunogenicity and efficacy of a candidate leishmaniasis vaccine LEISH-F3+GLA-SE. Clin Transl Immunology 2015; 4: e35.
26. Ghorbani M, Farhoudi R. Leishmaniasis in humans: Drug or vaccine therapy? Drug Des Devel Ther 2018; 12: 25–40.
27. Rijal S, Ostyn B, Uranw S, Rai K, Bhattarai NR, Dorlo TPC, et al. Increasing failure of miltefosine in the treatment of kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin Infect Dis 2013; 56: 1530–1538.
28. Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev 2006; 19: 111–126.
29. Singh OP, Sundar S. Developments in diagnosis of visceral leishmaniasis in the elimination era. J Parasitol Res 2015; 2015: 239469.
30. Santos DCO, Costa CHN, Durães FV, Costa Silva FO, Batista AC, Pipolo AE, et al. Leishmania braziliensis and Leishmania infantum: Differences and similarities in the inflammatory response and progression to disease in mice. Exp Parasitol 2020; 211: 107852.
31. Alavizadeh SH, Shapouri R, Tafaghodi M. Immunization against leishmaniasis using PLGA nanospheres as a powerful adjuvant and delivery system. Nanomed J 2016; 3: 1–12.
32. Tomé M, Luk F, Pisitkun T, Turquette C, Möller A, Altevogt P, et al. In-depth analysis of the plasma extracellular vesicle proteome reveals novel biomarkers of ovarian cancer. Sci Rep 2020; 10: 12822.
33. Seyed N, Peters NC, Rafati S. Translating observations from leishmanization into non-living vaccines: The potential of dendritic cell-based vaccination strategies against leishmaniasis. Front Immunol 2018; 9: 1227-1236.
34. Maspi N, Abdoli A, Ghaffarifar F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: A review. Pathog Glob Health 2016; 110: 247–260.
35. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2002; 2: 845–858.
36. Tripathi P, Singh V, Naik S. Immune response to leishmania: Paradox rather than paradigm. FEMS Immunol Med Microbiol 2007; 51: 229–242.
37. Pawar A, Bhandari P, Sharma S, Sharma A, Sandhir R, Jadhav SE, et al. Pentamidine-capped gold nanoclusters: A novel approach for the treatment of leishmaniasis. Int J Pharm 2019; 554: 326–337.
38. Chakravarty J, Sundar S. Drug resistance in leishmaniasis. J Glob Infect Dis 2010; 2: 167–176.
39. Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis 2016; 10: e0004349.
40. Sundar S, Chakravarty J. An update on pharmacotherapy for leishmaniasis. Expert Opin Pharmacother 2015; 16: 237–252.
41. Monge-Maillo B, López-Vélez R. Therapeutic options for old world cutaneous leishmaniasis and new world cutaneous and mucocutaneous leishmaniasis. Drugs 2013; 73: 1889–1920.
42. Croft SL, Olliaro P. Leishmaniasis chemotherapy—challenges and opportunities. Clin Microbiol Infect 2011; 17: 1478–1483.
43. Doroodgar A, Doroodgar M. Leishmaniasis in the world and in Iran: status, problems and efforts to control it. Res J Med Sci 2012; 6: 251–257.
44. Kedzierski L. Leishmaniasis vaccine: where are we today? J Glob Infect Dis 2010; 2: 177–185.
45. Verma S, Dey CS. Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 2004; 48: 3010–3015.
46. Kaye P, Scott P. Leishmaniasis: Complexity at the host–pathogen interface. Nat Rev Microbiol 2011; 9: 604–615.
47. Pace D. Leishmaniasis. J Infect 2014; 69: S10–S18.
48. Bañuls AL, Hide M, Prugnolle F. Leishmania and the leishmaniases: A parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv Parasitol 2007; 64: 1–109.
49. McGwire BS, Satoskar AR. Leishmaniasis: Clinical syndromes and treatment. QJM 2014; 107: 7–14.
50. Elmahallawy EK, Sampedro Martínez A, Rodríguez-Granger J, Hoyos-Mallecot Y, Navarro Mari JM, Gutiérrez Fernández J. Diagnosis of leishmaniasis. J Infect Dev Ctries 2014; 8: 961–972.
51. Ashford RW. The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol 2000; 30: 1269–1281.
52. Nylén S, Gautam S. Immunological perspectives of leishmaniasis. J Glob Infect Dis 2010; 2: 135–146.
53. Mohebali M. Visceral leishmaniasis in Iran: Review of the epidemiological and clinical features. Iran J Parasitol 2013; 8: 348–358.
54. Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis 2016; 10: e0004349.
55. Ashkani J, Rees HH. Metabolic pathways in Leishmania parasites and their role in drug targeting. J Parasitol Res 2015; 2015: 534062.
56. Selvapandiyan A, Dey R, Nylen S, Duncan R, Sacks D, Nakhasi HL. Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis. J Immunol 2009; 183: 1813–1820.
57. Kumar R, Bumb RA, Salotra P. Correlation of parasitic load in lesion tissues with clinical features and immune responses in Indian kala-azar. Clin Microbiol Infect 2010; 16: 1191–1195.
58. No JH, Kim YB, Song YS. Targeted therapy in ovarian cancer. Biomol Ther (Seoul) 2011; 19: 1–10.
59. Ghaffarifar F, Dalimi A, Sharifi Z, Jaffe CL. Evaluation of immune response in BALB/c mice immunized with gene encoding cysteine proteinase of Leishmania major. Iran J Parasitol 2006; 1: 41–48.
60. Bogdan C, Rollinghoff M. The immune response to Leishmania: mechanisms of parasite control and evasion. Int J Parasitol 1998; 28: 121–134.
61. Maspi N, Abdoli A, Ghaffarifar F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: A review. Pathog Glob Health 2016; 110: 247–260.
62. Goto H, Lindoso JA. Immunity and immunosuppression in leishmaniasis. J Infect Dev Ctries 2010; 4: 655–659.
63. Singh OP, Hasker E, Boelaert M, Sundar S. Leishmaniasis treatment—a review of clinical trials. Trans R Soc Trop Med Hyg 2016; 110: 99–110.
64. Sacks D. The role of T cells in the immunopathogenesis of leishmaniasis. Curr Opin Immunol 1997; 9: 444–449.
65. Prates DB, Coutinho CM, Rocha FAE, Figueiredo RC, Torres-Santos EC. Immunity and immunosuppression in leishmaniasis. J Infect Dev Ctries 2010; 4: 655–659.
66. Handman E, Bullen DV. Interaction of Leishmania with the host macrophage. Trends Parasitol 2002; 18: 332–334.
67. Pérez-Jeldres T, Torres-Montero V, Paredes R, Palma G, Caldera-Miranda MV. Leishmaniasis: An update on disease pathogenesis and treatment. Microb Pathog 2017; 110: 128–136.
68. Melby PC, Tryon VV, Chandrasekar B. Immunology and immunotherapy of leishmaniasis. In: Farrell JP, editor. Immunology of Protozoan Parasites. Boca Raton: CRC Press; 2002. p. 245–71.
69. Sundar S, Rai M. Laboratory diagnosis of visceral leishmaniasis. Clin Diagn Lab Immunol 2002;9:951–958.
70. Bogdan C. The role of nitric oxide in innate immunity. Immunol Lett 2001;79:99–103.
71. Gomes NA, Farias LP, Guimarães LH, Carvalho EM. Immunity to Leishmania and the rational search for vaccines against leishmaniasis. Front Immunol 2014;5:299.
72. Brodskyn CI, de Oliveira CI. Immune mechanisms in cutaneous leishmaniasis: the role of parasite persistence. Parasite Immunol 2015;37:199–208.
73. Singh OP, Hasker E, Boelaert M, Sundar S. Treatment of visceral leishmaniasis: Past and present. Curr Opin Infect Dis 2014;27:415–421.
74. Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev 2006;19:111–126.
75. Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis 2017;11:e0006052.
76. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012;7:e35671.
77. World Health Organization. Control of the leishmaniases. World Health Organ Tech Rep Ser 2010;949:1–186.
78. Petersen CA, Guerra MV. Vaccine development against leishmaniasis: Challenges and recent developments. Expert Rev Vaccines 2017;16:1135–1146.
79. Dey R, Natarajan G, Bhattacharjee S, Bhattacharyya MK. Vaccines against leishmaniasis. Indian J Med Res 2016;144:454–464.
80. Alexander J, Bryson K. T helper (h)1/Th2 and Leishmania: Paradox rather than paradigm. Immunol Lett 2005;99:17–23.
81. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2002;2:845–858.
82. Kaye PM, Scott P. Leishmaniasis: Complexity at the host–pathogen interface. Nat Rev Microbiol 2011;9:604–615.
83. Engwerda CR, Kaye PM. Organ-specific immune responses associated with infectious disease. Immunol Today 2000; 21: 73–78.
84. McMahon-Pratt D, Alexander J. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev 2004; 201: 206–224.
85. Lira R, Sundar S, Makharia A, Kenney R, Gam A, Fairlamb AH, et al. Evidence that the high-affinity pentavalent antimonial-resistant Leishmania donovani isolates exhibit cross-resistance to miltefosine and amphotericin B. Antimicrob Agents Chemother 2012; 56: 1224–1233.
86. Sundar S, Chakravarty J. An update on pharmacotherapy for leishmaniasis. Expert Opin Pharmacother 2015; 16: 237–252.
87. Dey R, Bhattacharjee S, Haldar AK, Bhattacharyya MK. Recent advances in chemotherapy of visceral leishmaniasis. Expert Opin Investig Drugs 2012; 21: 1111–1124.
88. Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 2012; 67: 2576–2597.
89. Gupta S, Dube A, Srivastava A, Singh N, Negi NS, Singh S. Leishmaniasis: Current status of diagnosis and treatment. J Postgrad Med 2007; 53: 112–117.
90. Ponte-Sucre A. Miltefosine resistance in Leishmania donovani. Int J Antimicrob Agents 2011; 38: 437–443.
91. Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci 2017; 4: 170095.
92. Abdi Ghavidel A, Aghamiri S, Raee P, Mohammadi-Yeganeh S, Noori E, Bandehpour M, et al. Recent advances in CRISPR/Cas9-mediated genome editing in Leishmania strains. Acta Parasitol 2024; 69: 121–134.
93. Engstler M, Beneke T. Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit. Elife 2023; 12: e85605.
94. Ayala A, Llanes A, Lleonart R, Restrepo CM. Advances in Leishmania vaccines: Current development and future prospects. Pathogens 2024; 13: 812-829.
95. de Freitas e Silva R, Von Stebut E. Unraveling the role of immune checkpoints in leishmaniasis. Front Immunol 2021; 12: 620144.
96. Berhe H, Kumar Cinthakunta Sridhar M, Zerihun M, Qvit N. The potential use of peptides in the fight against chagas disease and leishmaniasis. Pharmaceutics 2024; 16: 227-267.
97. Oualha R, Abdelkrim YZ, Guizani I, Harigua-Souiai E. Approved drugs successfully repurposed against Leishmania based on machine learning predictions. Front Cell Infect Microbiol 2024; 14: 1403589.
98. Damasceno JD, Reis-Cunha J, Crouch K, Beraldi D, Lapsley C, Tosi LR, et al. Conditional knockout of RAD51-related genes in Leishmania major reveals a critical role for homologous recombination during genome replication. PLoS Genet 2020; 16: e1008828.
99. Beneke T, Gluenz E. LeishGEdit: A method for rapid gene knockout and tagging using CRISPR-Cas9. In: Leishmania: Methods and Protocols. Springer; 2019. p. 189–210.
100. May NH, Cao A, Schmid A, Link F, Arias-del-Angel J, Meiser E, Beneke T. Improved base editing and functional screening in Leishmania via co-expression of the AsCas12a ultra variant, a T7 RNA polymerase, and a cytosine base editor. Elife 2025; 13: RP97437.
101. Lye L-F, Owens KL, Jang S, Marcus JE, Brettmann EA, Beverley SM. An RNA interference (RNAi) toolkit and its utility for functional genetic analysis of Leishmania (Viannia). Genes 2022; 14: 93-109.