1. Xu C, Akakuru OU, Ma X, Zheng J, Zheng J, Wu A. Nanoparticle-based wound dressing: recent progress in the detection and therapy of bacterial infections. Bioconjug Chem 2020; 31: 1708-1723.
2. Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless skin repair. J Tissue Eng 2023; 14:20417314231185848.
3. Mirhaj M, Labbaf S, Tavakoli M, Seifalian AM. Emerging treatment strategies in wound care. J Interv Wound Care 2022; 19:1934–1954.
4. Shi C, Wang C, Liu H, Li Q, Li R, Zhang Y, et al. Selection of appropriate wound dressing for various wounds. Front Bioeng Biotechnol 2020; 8:182-198.
5. Randviir EP, Brownson DA, Banks CE. A decade of graphene research: Production, applications and outlook. Microchim Acta 2014; 17:426–432.
6. Zhen Z, Zhu H. Structure and properties of graphene. In: Graphene. Elsevier; 2018. p. 1–12.
7. Shirshahi V, Tabatabaei SN, Hatamie S, Saber R. Functionalized reduced graphene oxide as a lateral flow immunoassay label for one-step detection of Escherichia coli O157:H7. J Pharm Anal 2019; 164:104–111
8. Rehman SR, Augustine R, Zahid AA, Ahmed R, Tariq M, Hasan A. Reduced graphene oxide incorporated GelMA hydrogel promotes angiogenesis for wound healing applications. Int J Nanomedicine 2019; 14:9603–9617.
9. Shariati A, Hosseini SM, Chegini Z, Seifalian A, Arabestani MR. Graphene-based materials for inhibition of wound infection and accelerating wound healing. J Biomed Pharm Ther 2023; 158:114184.
10. Saedi M, Shirshahi V, Mirzaii M, Nikbakht M. Preparation of graphene oxide nanoparticles and their derivatives: Evaluation of their antimicrobial and anti-proliferative activity against 3T3 cell line. J Dent Sci Technol 2024; 45:381–389.
11. Shirshahi V, Saedi M, Nikbakht M, Mirzaii M. Unveiling the antimicrobial potential of oxidized graphene derivatives: Promising materials for advanced wound dressings and antibacterial surfaces. J Dent Dent Sci Technol 2023; 88:104949.
12. Lasocka I, Jastrzębska E, Szulc-Dąbrowska L, Skibniewski M, Pasternak I, Kalbacova M, et al. The effects of graphene and mesenchymal stem cells in cutaneous wound healing and their putative action mechanism. Int J Nanomedicine 2019; 14:2281–2299.
13. Li Z, Wang H, Yang B, Sun Y, Huo R. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring. Mater Sci Eng C 2015; 57:181–188.
14. Manral K. Viscoelastic properties and rheological characterization of carbomers. Int J Res Eng Technol 2015; 1:17–30.
15. Hui Q, Zhang L, Yang X, Yu B, Huang Z, Pang S, et al. Higher biostability of rh-aFGF-carbomer 940 hydrogel and its effect on wound healing in a diabetic rat model. J Drug Deliv Technol 2018; 4:1661–1668.
16. Singla AK, Chawla M, Singh A. Potential applications of carbomer in oral mucoadhesive controlled drug delivery system: a review. Drug Dev Ind Pharm 2000; 26:913–924.
17. Huang Y, Shi F, Wang L, Yang Y, Khan BM, Cheong K-L, et al. Preparation and evaluation of Bletilla striata polysaccharide/carboxymethyl chitosan/carbomer 940 hydrogel for wound healing. Int J Biol Macromol 2019; 132:729–737.
18. Hayati F, Ghamsari SM, Dehghan MM, Oryan A. Effects of carbomer 940 hydrogel on burn wounds: An in vitro and in vivo study. J Drug Deliv Technol 2018; 29:593–599.
19. Patarroyo JL, Cifuentes J, Muñoz LN, Cruz JC, Reyes LH. Novel antibacterial hydrogels based on gelatin/polyvinyl-alcohol and graphene oxide/silver nanoconjugates: Formulation, characterization, and preliminary biocompatibility evaluation. J Health 2022; 8:3-19.
20. Chen C-Y, Yin H, Chen X, Chen T-H, Liu H-M, Rao S-S, et al. Ångstrom-scale silver particle–embedded carbomer gel promotes wound healing by inhibiting bacterial colonization and inflammation. Adv Healthc Mater 2020;6: eaba0942.
21. Fu C, Qi Z, Zhao C, Kong W, Li H, Guo W, et al. Enhanced wound repair ability of arginine-chitosan nanocomposite membrane through the antimicrobial peptides-loaded polydopamine-modified graphene oxide. Int J Biol Macromol 2021; 15:17-32.
22. Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanomater Chem 2018; 8:123–137.
23. Kumara P, Prakash S, Lokesh P, Manral K. Viscoelastic properties and rheological characterization of carbomers. Int J Life Res Eng Technol 2015; 1:17–30.
24. Mukherjee S, Sriram P, Barui AK, Nethi SK, Veeriah V, Chatterjee S, et al. Graphene oxides show angiogenic properties. J Biomed Nanotechnol 2015; 4:1722–1732.
25. Huang X, Yang J, Zhang R, Ye L, Li M, Chen W. Phloroglucinol derivative carbomer hydrogel accelerates MRSA-infected wounds’ healing. Int J Mol Sci 2022; 23:8682. doi: 10.3390/ijms23158682.
26. Wang Z, Hu Y, Xue Y, Zhu Z, Wu Y, Zeng Q, et al. Log P determines licorice flavonoids release behaviors and classification from carbomer cross-linked hydrogel. Int J Mol Sci 2022; 14:1333-1351.
27. Sari LORK, Fardliana LQ, Nurahmanto D, Irawan ED. Carbomer and ethyl cellulose optimisation in the preparation of mucoadhesive microspheres ciprofloxacin hydrochloride. J Pharm Educ 2023; 23:27–31.
28. Gan C, Cheng R, Xu K, Zhang J, Wang H, Xu T, et al. Preparation and physicochemical properties of coenzyme Q10 loaded niosomal hydrogels based on carbomer and scleroglucan. Int J Pharm 2023; 63:2999–3012.
29. Dehghanzad B, Aghjeh MKR, Rafeie O, Tavakoli A, Oskooie A. Synthesis and characterization of graphene and functionalized graphene via chemical and thermal treatment methods. RSC Adv 2016; 6:3578–3585.
30. Hosseini MA, Malekie S, Ebrahimi N. The analysis of linear dose-responses in gamma-irradiated graphene oxide: Can FTIR analysis be considered a novel approach to examining the linear dose-responses in carbon nanostructures? RSC Adv 2020; 176:109067.
31. Zhang L, Li Y, Guo H, Zhang H, Zhang N, Hayat T, et al. Decontamination of U (VI) on graphene oxide/Al₂O₃ composites investigated by XRD, FT-IR and XPS techniques. J Hazard Mater 2019; 248:332–338.