1. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater 2022; 10: 15–31.
2. Steijvers E, Ghei A, Xia Z. Manufacturing artificial bone allografts: A perspective. Biomater Transl 2022; 3: 65–80.
3. Amini Z, Lari R. A systematic review of decellularized allograft and xenograft-derived scaffolds in bone tissue regeneration. Tissue Cell 2021; 69: 101494.
4. Zhou Q, Li T, Wang K, Zhang Q, Geng Z, Deng S, et al. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol 2022; 13: 928173.
5. Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NYK. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials 2022; 289: 121786.
6. Sykes M, Sachs DH. Progress in xenotransplantation: Overcoming immune barriers. Nat Rev Nephrol 2022; 18: 745–761.
7. Hoshiba T. Decellularized extracellular matrix for cancer research. Materials 2019; 12: 1311-1326.
8. Pereira AR, Trivanović D, Stahlhut P, Rudert M, Groll J, Herrmann M. Preservation of the naïve features of mesenchymal stromal cells in vitro: Comparison of cell- and bone-derived decellularized extracellular matrix. J Tissue Eng 2022; 13: 20417314221074453.
9. Tran HLB, Doan VN, To QM, Nguyen MTN, Trinh VNL, Le TTV. Decellularization of bone tissue. Adv Exp Med Biol 2021; 1345: 225–239.
10. Ferraz MP. An overview on the big players in bone tissue engineering: Biomaterials, scaffolds and cells. Int J Mol Sci 2024; 25: 3836-3863.
11. Klak M, Łojszczyk I, Berman A, Tymicki G, Adamiok-Ostrowska A, Sierakowski M, et al. Impact of porcine pancreas decellularization conditions on the quality of obtained dECM. Int J Mol Sci 2021; 22:7005-7020.
12. Rabbani M, Zakian N, Alimoradi N. Contribution of physical methods in decellularization of animal tissues. J Med Signals Sens 2021; 11: 1–11.
13. Ahmed K, Tauseef H, Mohiuddin OA. Combination of adipose-derived stromal/stem cells and decellularized adipose tissue hydrogel for osteogenic applications. Methods Mol Biol 2024; 2783: 195–207.
14. Xu K, Kuntz LA, Foehr P, Kuempel K, Wagner A, Tuebel J, et al. Efficient decellularization for tissue engineering of the tendon-bone interface with preservation of biomechanics. PLoS One 2017; 12: e0171577.
15. Zeng Y, Zhou M, Mou S, Yang J, Yuan Q, Guo L, et al. Sustained delivery of alendronate by engineered collagen scaffold for the repair of osteoporotic bone defects and resistance to bone loss. J Biomed Mater Res A 2020; 108: 2460–2472.
16. Lee D, Wufuer M, Kim I, Choi TH, Kim BJ, Jung HG, et al. Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci Rep 2021; 11: 746-755.
17. Koski C, Sarkar N, Bose S. Cytotoxic and osteogenic effects of crocin and bicarbonate from calcium phosphates for potential chemopreventative and anti-inflammatory applications in vitro and in vivo. J Mater Chem B 2020; 8: 2048–2062.
18. Li B, Qin K, Wang B, Liu B, Yu W, Li Z, et al. Crocin promotes osteogenesis differentiation of bone marrow mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2020; 56: 680–688.
19.Vafaei S, Wu X, Tu J, Nematollahi-Mahani SN. The effects of crocin on bone and cartilage diseases. Front Pharmacol 2021; 12: 830331.
20. Algandaby MM. Crocin attenuates metabolic syndrome-induced osteoporosis in rats. J Food Biochem 2019; 43: e12895.
21.You L, Weikang X, Lifeng Y, Changyan L, Yongliang L, Xiaohui W, et al. In vivo immunogenicity of bovine bone removed by a novel decellularization protocol based on supercritical carbon dioxide. Artif Cells Nanomed Biotechnol 2018; 46: 334–344.
22. Gardin C, Ricci S, Ferroni L, Guazzo R, Sbricoli L, De Benedictis G, et al. Decellularization and delipidation protocols of bovine bone and pericardium for bone grafting and guided bone regeneration procedures. PLoS One 2015; 10: e0132344.
23. Tamilmahan P, Pathak R, Rashmi, Amarpal, Aithal HP, Mohsina A, et al. Decellularized xenogenic bone graft for repair of segmental bone defect in rabbits. Iran J Vet Res 2022; 23: 310–321.
24. Philips C, Terrie L, Muylle E, Thorrez L. Determination of DNA content as quality control in decellularized tissues: Challenges and pitfalls. Regener Biomater 2024; 11: rbae123.
25. Jarukas L, Vitkevicius K, Mykhailenko O, Bezruk I, Georgiyants V, Ivanauskas L. Effective isolation of picrocrocin and crocins from saffron: From HPTLC to working standard obtaining. Molecules 2022; 27: 4286-4299.
26. Kuljanin J, Janković I, Nedeljković J, Prstojević D, Marinković V. Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions. J Pharm Biomed Anal 2002; 28: 1215–1220.
27. Kargozar S, Milan PB, Amoupour M, Kermani F, Gorgani S, Nazarnezhad S, et al. Osteogenic potential of magnesium (Mg)-doped multicomponent bioactive glass: In vitro and in vivo animal studies. Materials (Basel) 2022; 15: 318-333
28. Park KW, Yun YP, Kim SE, Song HR. The effect of alendronate loaded biphasic calcium phosphate scaffolds on bone regeneration in a rat tibial defect model. Int J Mol Sci 2015; 16: 26738–26753.
29. Lee SS, Du X, Kim I, Ferguson SJ. Scaffolds for bone-tissue engineering. Matter 2022; 5: 2722–2759.
30. Al Qabbani A, Rani KA, Syarif J, AlKawas S, Sheikh Abdul Hamid S, Samsudin A, et al. Evaluation of decellularization process for developing osteogenic bovine cancellous bone scaffolds in-vitro. PLoS One 2023; 18: e0283922.
31. Alom N, Peto H, Kirkham GR, Shakesheff KM, White LJ. Bone extracellular matrix hydrogel enhances osteogenic differentiation of C2C12 myoblasts and mouse primary calvarial cells. J Biomed Mater Res B Appl Biomater 2018; 106: 900–908.
32. Rothrauff BB, Tuan RS. Decellularized bone extracellular matrix in skeletal tissue engineering. Biochem Soc Trans 2020; 48: 755–764.
33. Amirazad H, Dadashpour M, Zarghami N. Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J Biol Eng 2022; 16: 1-18.
34. He M, Callanan A. Comparison of methods for whole-organ decellularization in tissue engineering of bioartificial organs. Tissue Eng Part B Rev 2013; 19: 194–208.
35. Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K, et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 2010; 31: 3590–3595.
36. Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: From processing techniques to applications. Biomed Res Int 2017; 2017: 9831534.
37. Dehghani S, Aghaee Z, Soleymani S, Tafazoli M, Ghabool Y, Tavassoli A. An overview of the production of tissue extracellular matrix and decellularization process. Cell Tissue Bank 2024; 25: 369–387.
38. Chinnasami H, Dey MK, Devireddy R. Three-dimensional scaffolds for bone tissue engineering. Bioengineering (Basel) 2023; 10: 759-790.
39. López-Chicón P, Rodríguez Martínez JI, Castells-Sala C, Lopez-Puerto L, Ruiz-Ponsell L, Fariñas O, et al. Pericardium decellularization in a one-day, two-step protocol. Mol Cell Biochem 2025; 480: 1819–1829.
40. Dantas LR, Ribeiro VST, Kraft L, Pinho RA, Suss PH, Vasconcellos FTF, et al. Collagen matrices are preserved following decellularization of a bovine bone scaffold. Cell Tissue Bank 2022; 23: 531–540.
41. Hensley A, Rames J, Casler V, Rood C, Walters J, Fernandez C, et al. Decellularization and characterization of a whole intervertebral disk xenograft scaffold. J Biomed Mater Res A 2018; 106: 2412–2423.
42. Zhou K, Azaman FA, Cao Z, Brennan Fournet M, Devine DM. Bone tissue engineering scaffold optimisation through modification of chitosan/ceramic composition. Macromol 2023; 3: 326–342.
43. Kim Y, Park EJ, Kim TW, Na DH. Recent progress in drug release testing methods of biopolymeric particulate system. Pharmaceutics 2021; 13: 1313-1335.
44. Zhang B, Gleadall A, Belton P, McDonagh T, Bibb R, Qi S. New insights into the effects of porosity, pore length, pore shape and pore alignment on drug release from extrusion-based additive manufactured pharmaceuticals. Addit Manuf 2021; 46: 102196.
45. Kennedy K, Vu K, Coakley N, Daley-Morris J, Forbes L, Hartzell R, et al. Safe handling of hazardous drugs. J Oncol Pharm Pract 2023; 29: 401–412.
46. Mesdaghinia A, Pourpak Z, Naddafi K, Nodehi RN, Alizadeh Z, Rezaei S, et al. An in vitro method to evaluate hemolysis of human red blood cells (RBCs) treated by airborne particulate matter (PM10). MethodsX 2019; 6: 156–161.
47. Malehmir S, Esmaili MA, Khaksary Mahabady M, Sobhani-Nasab A, Atapour A, Ganjali MR, et al. A review: Hemocompatibility of magnetic nanoparticles and their regenerative medicine, cancer therapy, drug delivery, and bioimaging applications. Front Chem 2023; 11: 1249134.
48. Sabouni N, Mohammadi M, Boroumand AR, Palizban S, Tavakol Afshari J. Stimulating effect of nanocurcumin and crocin on proliferation and pluripotency of bone marrow-derived mesenchymal stem cells. Iran J Basic Med Sci 2024; 27: 1187–1196.
49. Kalalinia F, Ghasim H, Farzad SA, Pishavar E, Ramezani M, Hashemi M. Comparison of the effect of crocin and crocetin, two major compounds extracted from saffron, on osteogenic differentiation of mesenchymal stem cells. Life Sci 2018; 208: 262–267.
50. Lee JH, Kong SC, Chen CH, Lin YC, Lee KT, Wang YH. The effects of photobiomodulation on bone defect repairing in a diabetic rat model. Int J Mol Sci 2021; 22: 11026-11036.
51. Gomathi K, Akshaya N, Srinaath N, Moorthi A, Selvamurugan N. Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sci 2020; 245: 117389.
52. Zhu YS, Mo TT, Jiang C, Zhang JN. Osteonectin bidirectionally regulates osteoblast mineralization. J Orthop Surg Res 2023; 18: 761-769.
53. Bargowo L, Kusumawardhani B, Perdana S, Wijaksana IKE, Saskianti T, Ridwan RD, et al. Expression of osteopontin and osteocalcin in osteoblast cells exposed to a combination of polymethylmethacrylate (PMMA) and hydroxyapatite (HAp): A prospective observational study. Medicine (Baltimore) 2024; 103: e40088.