1. Kumar R, Saha P, Kumar Y, Sahana S, Dubey A, Prakash O. A review on diabetes mellitus: Type1 & Type 2. World J Pharm Pharm Sci 2020; 9:838-850.
2. Newairy A-SA-S, Hamaad FA, Wahby MM, Ghoneum M, Abdou HM. Neurotherapeutic effects of quercetin-loaded nanoparticles and biochanin-A extracted from Trifolium alexandrinum on PI3K/Akt/GSK-3β signaling in the cerebral cortex of male diabetic rats. PLoS One 2024; 19:e0301355.
3. Warokar K, Sawant S. Study of 18β glycyrrhetinic acid for the prevention of progression of diabetes induced nephropathy in laboratory animals. Int J Pharm Sci Drug Res 2021; 13:107-119.
4. Adil A, Muhammad F, Ishtiaq Q, Rashid S, Rashid H. Nanoparticles as drug delivery vehicles a comprehensive review on the influence of physicochemical properties on biological system interactions. Rev J Neurol Med Sci Rev 2025; 3:103-120.
5. Lawal SK, Olojede SO, Dare A, Faborode OS, Sulaiman SO, Naidu EC, et al. Highly active antiretroviral therapy-silver nanoparticle conjugate interacts with neuronal and glial cells and alleviates anxiety-like behaviour in streptozotocin-induced diabetic rats. IBRO Neurosci Rep 2022; 13:57-68.
6. Pirabbasi E, Zangeneh MM, Zangeneh A, Moradi R, Kalantar M. Chemical characterization and effect of Ziziphora clinopodioides green‐synthesized silver nanoparticles on cytotoxicity, anti-oxidant, and antidiabetic activities in streptozotocin‐induced hepatotoxicity in Wistar diabetic male rats. Food Sci Nutr 2024; 12:3443-3451.
7. Younis NS, Mohamed ME, El Semary NA. Green synthesis of silver nanoparticles by the Cyanobacteria synechocystis sp.: Characterization, antimicrobial and diabetic wound-healing actions. Mar Drugs 2022; 20:56-76.
8. Kumar V, Singh S, Srivastava B, Bhadouria R, Singh R. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its anti-oxidant, anti-inflammatory, antidiabetic and antibacterial activities. J Environ Chem Eng 2019; 7:103094.
9. Guan J, Wang J, Zhang X, Chi J, Ma Z, Zhang X. Silver nanoparticles with multimodal biological activities integrated into advanced material platforms for chronic wound management. Nanoscale 2025; 17:18409-18445.
10. Zhou Y, Huang H, Chen G, Yuan Q, Ren J, Wu J, et al. Promoting the healing of diabetic wounds with an antimicrobial gel containing AgNPs with anti-infective and anti-inflammatory properties. J Biomater Sci Polym Ed 2024; 35:1236-1257.
11. Xu L, Wang Y-Y, Huang J, Chen C-Y, Wang Z-X, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020; 10:8996-9031.
12. Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, et al. Role of nanoparticle-conjugates and nanotheranostics in abrogating oxidative stress and ameliorating neuroinflammation. Antioxidants 2023; 12:1877-1914.
13. Zhai X, Shan S, Wan J, Tian H, Wang J, Xin L. Silver nanoparticles induce a size-dependent neurotoxicity to SH-SY5Y neuroblastoma cells via ferritinophagy-mediated oxidative stress. Neurotox Res 2022; 40:1369-1379.
14. Tripathy DB, Pradhan S, Gupta A, Agarwal P. Nanoparticles induced neurotoxicity. Nanotoxicology 2025; 19:325-352.
15. Elblehi SS, Abd El-Maksoud EM, Aldhahrani A, Alotaibi SS, Ghamry HI, Elgendy SA, et al. Quercetin abrogates oxidative neurotoxicity induced by silver nanoparticles in Wistar rats. Life 2022; 12:578-595.
16. Chen L, Gong J, Yong X, Li Y, Wang S. A review of typical biological activities of glycyrrhetinic acid and its derivatives. RSC Adv 2024; 14:6557-6597.
17. Cai H, Chen X, Zhang J, Wang J. 18β-Glycyrrhetinic acid inhibits migration and invasion of human gastric cancer cells via the ROS/PKC-α/ERK pathway. J Nat Med 2018; 72:252-259.
18. Luo H, Zhang C, He L, Lin Z, Zhang J-c, Qi Q, et al. 18β-glycyrrhetinic acid ameliorates MPTP-induced neurotoxicity in mice through activation of microglial anti-inflammatory phenotype. Psychopharmacology 2023; 240:1947-1961.
19. Li ZY, Tung YT, Chen SY, Yen GC. Novel findings of 18β‐glycyrrhetinic acid on sRAGE secretion through inhibition of transient receptor potential canonical channels in high‐glucose environment. Biofactors 2019; 45:607-615.
20. Gad SR, El-Gogary RI, George MY, Hathout RM. Nose-to-brain delivery of 18β-Glycyrrhetinic acid using optimized lipid nanocapsules: A novel alternative treatment for Alzheimer’s disease. Int J Pharm 2023; 645:123387.
21. Khan SN, Shaheen F, Aleem U, Sheikh S, Tamfu AN, Ashraf S, et al. Peptide conjugates of 18β-glycyrrhetinic acid as potent inhibitors of α-glucosidase and AGEs-induced oxidation. Eur J Pharm Sci 2022; 168:106045.
22. Dias S, Pheiffer C, Abrahams Y, Rheeder P, Adam S. Molecular biomarkers for gestational diabetes mellitus. Int J Mol Sci. 2018; 19:2926.
23. Gou Y, Glat M, Damian V, Bryan CL, Phan BA, Faber CL, et al. AgRP neuron hyperactivity drives hyperglycemia in a mouse model of type 2 diabetes. J Clin Invest 2025; 135:1-9.
24. Olojede SO, Lawal SK, Dare A, Moodley R, Rennie CO, Naidu EC, et al. Highly active antiretroviral therapy conjugated silver nanoparticle ameliorates testicular injury in type-2 diabetic rats. Heliyon 2021; 7: :e08580.
25. Ayeni G, Rotimi LA, Abdulrazaq Y, Titus EF, Ajuma SF, Jamila AO, et al. Biogenic silver nanoparticles (AgNPs) ameliorates oxidative biomarkers in type-2 diabetic rats: In vitro and in vivo report. Curr Chem Biol 2024; 18:71-83.
26. Gupta GL, Sharma L, Sharma M. 18β-Glycyrrhetinic acid ameliorates neuroinflammation linked depressive behavior instigated by chronic unpredictable mild stress via triggering BDNF/TrkB signaling pathway in rats. Neurochem Res 2023; 48:551-569.
27. Kuo PL, Chen WF. Formation of silver nanoparticles under structured amino groups in pseudo-dendritic poly (allylamine) derivatives. J Phys Chem B 2003, 107: 11267–11272.
28. Ghezzi AC, Cambri LT, Botezelli JD, Ribeiro C, Dalia RA, de Mello MAR. Metabolic syndrome markers in Wistar rats of different ages. Diabetol Metab Syndr 2012; 4:16-22.
29. Care IoLARCo, Animals UoL. Guide for the care and use of laboratory animals: US Department of Health and Human Services, Public Health Service. 1986.
30. Lee N, Gao Y, Collins SL, Mårtensson LB, Randall W, Rowe TM, et al. Caesarean delivery rates and analgesia effectiveness following injections of sterile water for back pain in labour: A multicentre, randomised placebo controlled trial. EClinicalMedicine 2020; 25:100447.
31. El-Twab A, Sanaa M, Hozayen WG, Hussein OE, Mahmoud AM. 18 β-Glycyrrhetinic acid protects against methotrexate-induced kidney injury by up-regulating the Nrf2/ARE/HO-1 pathway and endogenous antioxidants. Ren Fail 2016; 38: 1516-1527.
32. Ipe DS, Kumar PS, Love RM, Hamlet SM. Silver nanoparticles at biocompatible dosage synergistically increases bacterial susceptibility to antibiotics. Front Microbiol 2020; 11:1074-1084.
33. Paul S, Sarkar I, Sarkar N, Bose A, Chakraborty M, Chakraborty A, et al. Silver nanoparticles in diabetes mellitus: Therapeutic potential and mechanistic insights. Bull Natl Res Cent 2024; 48:33-49.
34. Mostafavinia A, Amini A, Ghorishi SK, Pouriran R, Bayat M. The effects of dosage and the routes of administrations of streptozotocin and alloxan on induction rate of typel diabetes mellitus and mortality rate in rats. Lab Anim Res 2016; 32:160-165.
35. Ul Haq MN, Shah GM, Gul A, Foudah AI, Alqarni MH, Yusufoglu HS, et al. Biogenic synthesis of silver nanoparticles using phagnalon niveum and its in vivo anti-diabetic effect against alloxan-induced diabetic wistar rats. Nanomaterials 2022; 12:830-847.
36. de Souza Abboud R, Chagas MA, de Amorim Ribeiro IC, Corrêa LBNS, Lange RM. A modified protocol of the alloxan technique for the induction of diabetes mellitus in Wistar rats. Medicina Veterinária (UFRPE) 2020; 14:315-318.
37. Domínguez-Oliva A, Hernández-Ávalos I, Olmos-Hernández A, Villegas-Juache J, Verduzco-Mendoza A, Mota-Rojas D. Thermal response of laboratory rats (Rattus norvegicus) during the application of six methods of euthanasia assessed by infrared thermography. Animals 2023; 13:2820-2840.
38. Frigon E-M, Gérin-Lajoie A, Dadar M, Boire D, Maranzano J. Comparison of histological procedures and antigenicity of human post-mortem brains fixed with solutions used in gross anatomy laboratories. Front Neuroanat 2024; 18:1372953.
39. Fomenko MV, Yanshole LV, Tsentalovich YP. Stability of metabolomic content during sample preparation: Blood and brain tissues. Metabolites 2022; 12:811-826.
40. Huynh HT, Shcherbinina E, Huang HC, Rezaei R, Sarshad AA. Biochemical separation of cytoplasmic and nuclear fraction for downstream molecular analysis. Curr Protoc 2024; 4:e1042.
41. Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 1966; 16:359-364.
42. Paglia DE, Valentine W, Dahlgren J. Effects of low-level lead exposure on pyrimidine 5’-nucleotidase and other erythrocyte enzymes. Possible role of pyrimidine 5’-nucleotidase in the pathogenesis of lead-induced anemia. J Clin Invest 1975; 56:1164-1169.
43. Flohe L. Superoxide dismutase assays. Methods in Enzymology. 105: Elsevier; 1984. p. 93-104.
44. Smart A, Tisca C, Huszar IN, Kor D, Ansorge O, Tachrount M, et al. Protocol for tissue processing and paraffin embedding of mouse brains following ex vivo MRI. STAR Proto 2023; 4:102681.
45. Ruiz-Uribe NE, Bracko O. Brain and blood extraction for immunostaining, protein, and RNA measurements after long-term two photon imaging in mice. Neuroscience 2020; 1-14.
46. Eaton SL, Roche SL, Llavero Hurtado M, Oldknow KJ, Farquharson C, Gillingwater TH, et al. Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. PLoS One 2013; 8:e72457.
47. Younus DA, Mustafa RM, Rashid RA, Hamad SS, Salih HR, Othman DS, et al. Evaluation of oxidative stress level and some anti-oxidant enzymes activity parameters in patients with type two diabetes mellitus. Orient J Chem 2023; 39:1606-1612.
48. Firoozrai M, Nourbakhsh M, Razzaghy-Azar M. Erythrocyte susceptibility to oxidative stress and anti-oxidant status in patients with type 1 diabetes. Diabetes Res Clin Pract 2007; 77:427-432.
49. Mahmoud AM, Al Dera HS. 18β-Glycyrrhetinic acid exerts protective effects against cyclophosphamide-induced hepatotoxicity: Potential role of PPARγ and Nrf2 upregulation. Genes Nutr 2015; 10:41-53.
50. Mosaad YO, Hussein MA, Ateyya H, Hassan SA, Wink M, Gobba NAEK, et al. BAAE-AgNPs improve symptoms of diabetes in STZ-induced diabetic rats. Curr Pharm Biotechnol 2023; 24:1812-1826.
51. Docea AO, Calina D, Buga AM, Zlatian O, Paoliello M, Mogosanu GD, et al. The effect of silver nanoparticles on antioxidant/pro-oxidant balance in a murine model. Int J Mol Sci 2020; 21:1233-1249.
52. Dhaliwal J, Dhaliwal N, Akhtar A, Kuhad A, Chopra K. Tetramethylpyrazine attenuates cognitive impairment via suppressing oxidative stress, neuroinflammation, and apoptosis in type 2 diabetic rats. Neurochem Res 2022; 47:2431-2444.
53. Wang Y, Tian M, Tan J, Pei X, Lu C, Xin Y, et al. Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin αVβ5/AMPK signaling pathway after intracerebral hemorrhage in mice. J Neuroinflammation 2022; 19:82-101.
54. Jafari Anarkooli I, Sankian M, Ahmadpour S, Varasteh AR, Haghir H. Evaluation of BCL‐2 expression and CASpaSe‐3 in STZ‐induced diabetic rats. J Diabetes Res 2008; 2008:638467.
55. Sousa A, Rufino AT, Fernandes R, Malheiro A, Carvalho F, Fernandes E, et al. Silver nanoparticles exert toxic effects in human monocytes and macrophages associated with the disruption of Δψm and release of pro-inflammatory cytokines. Arch Toxikol 2023; 97:405-420.
56. Yuan S, She D, Jiang S, Deng N, Peng J, Ma L. Endoplasmic reticulum stress and therapeutic strategies in metabolic, neurodegenerative diseases and cancer. Mol Med 2024; 30:40-54.
57. Walter F, O’Brien A, Concannon CG, Düssmann H, Prehn JH. ER stress signaling has an activating transcription factor 6α (ATF6)-dependent “off-switch”. J Biol Chem 2018; 293:18270-18284.
58. Yang T, Zhang Y, Chen L, Thomas ER, Yu W, Cheng B, et al. The potential roles of ATF family in the treatment of Alzheimer’s disease. Biomed Pharmacother 2023; 161:114544.
59. Oyadomari S, Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. 2004, Cell Death Differ 11: 381-389.
60. Bonneh‐Barkay D, Wiley CA. Brain extracellular matrix in neurodegeneration. Brain Pathol 2009; 19:573-585.
61. Soles A, Selimovic A, Sbrocco K, Ghannoum F, Hamel K, Moncada EL, et al. Extracellular matrix regulation in physiology and in brain disease. Int J Mol Sci 2023; 24:7049-7065.