1. Matoso V, Bargi-Souza P, Ivanski F, Romano MA, Romano RM. Acrylamide: A review about its toxic effects in the light of Developmental Origin of Health and Disease (DOHaD) concept. Food Chem 2019; 283:422-430.
2. Charoenpanich J. Removal of Acrylamide by Microorganisms [Internet]. Applied Bioremediation - Active and Passive Approaches. InTech; 2013. Available from: http://dx.doi.org/10.5772/56150
3. Hogervorst JG, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA. Dietary acrylamide intake and the risk of renal cell, bladder, and prostate cancer. Am J Clin Nutr 2008; 87:1428-1438.
4. Chain EPoCitF. Scientific opinion on acrylamide in food. EFSA Journal 2015; 13:4104.
5. Teodor V, Cuciureanu M, Filip C, Zamosteanu N, Cuciureanu R. Protective effects of selenium on acrylamide toxicity in the liver of the rat. Effects on the oxidative stress. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi 2011; 115:612-618.
6. Duan X, Wang Q-C, Chen K-L, Zhu C-C, Liu J, Sun S-C. Acrylamide toxic effects on mouse oocyte quality and fertility in vivo. Sci Rep 2015; 5:11562-11572.
7. Atef H, Attia GM, Rezk HM, El-Shafey M. Effect of vitamin E on biochemical and ultrastructural changes in acrylamide-induced renal toxicity in rats. Int J Sci Rep 2017; 3:134-143.
8. Mansour MK, Ibrahim E, El-Kholy MM, El-Madawy SA. Anti-oxidant and histopathological effect of catechin and neem leaves extract in acrylamide toxicity of rats. Egypt J of Compt Path and Clin Pathol 2008; 21: 290-313.
9. Erkekoglu P, Baydar T. Acrylamide neurotoxicity. Nutr Neurosci 2014; 17:49-57.
10. Pennisi M, Malaguarnera G, Puglisi V, Vinciguerra L, Vacante M, Malaguarnera M. Neurotoxicity of acrylamide in exposed workers. Int J Environ Res Public Health 2013; 10:3843-3854.
11. Mannaa F, Abdel‐Wahhab MA, Ahmed HH, Park MH. Protective role of Panax ginseng extract standardized with ginsenoside Rg3 against acrylamide‐induced neurotoxicity in rats. J Appl Toxicol 2006; 26:198-206.
12. Ahmed HH, Elmegeed GA, El-Sayed E-SM, Abd-Elhalim MM, Shousha WG, Shafic RW. Potent neuroprotective role of novel melatonin derivatives for management of central neuropathy induced by acrylamide in rats. Eur J Med Chem 2010; 45:5452-5459.
13. Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Kucukkurt I, Demirel HH, et al. The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food Chem Toxicol 2018; 118:745-752.
14. Mansour SZ, Moawed FS, Elmarkaby SM. Protective effect of 5, 7-dihydroxyflavone on brain of rats exposed to acrylamide or γ-radiation. J Photochem Photobiol B 2017; 175:149-155.
15. Ghasemzadeh Rahbardar M, Hemadeh B, Razavi BM, Eisvand F, Hosseinzadeh H. Effect of carnosic acid on acrylamide induced neurotoxicity: In vivo and in vitro experiments. Drug Chem Toxicol 2020:1-8.
16. Mohammadzadeh L, Mehri S, Hosseinzadeh H. Protective effect of grape seed extract against acrylamide-induced neurotoxicity in vitro and in vivo. J Rep in Pharm Sci 2018; 7:344-356.
17. Ghasemzadeh Rahbardar M, Cheraghi Farmed H, Hosseinzadeh H, Mehri S. Protective effects of selenium on acrylamide-induced neurotoxicity and hepatotoxicity in rats. Iran J Basic Med Sci 2021; 24: 1041–1049.
18. Mehri S, Dadesh Q, Tabeshpour J, Vahdati Hassani F, Karimi G, Hosseinzadeh H. Evaluation of the neuroprotective effect of silymarin on acrylamide-induced neurotoxicity. Jundishapur J Nat Pharm Prod 2016; 11; e37644.
19. Garrido‐Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol 2013; 169:337-352.
20. Kim H-S, Suh Y-H. Minocycline and neurodegenerative diseases. Behav Brain Res 2009; 196:168-179.
21. Amin B, Hajhashemi V, Hosseinzadeh H. Minocycline potentiates the anti-hyperalgesic effect of ceftriaxone in CCI-induced neuropathic pain in rats. Res Pharm Sci 2015; 10:34-42.
22. Fagan SC, Cronic LE, Hess DC. Minocycline development for acute ischemic stroke. Transl Stroke Res 2011; 2:202-208.
23. Plane JM, Shen Y, Pleasure DE, Deng W. Prospects for minocycline neuroprotection. Arch Neurol 2010; 67:1442-1448.
24. Shayan M, Mehri S, Razavi BM, Hosseinzadeh H. Minocycline as a neuroprotective agent in arsenic-induced neurotoxicity in PC12 cells. Biol Trace Elem Res 2023; 201:2955-2962.
25. Shayan M, Mehri S, Razavi BM, Hosseinzadeh H. Minocycline protects PC12 cells against cadmium-induced neurotoxicity by modulating apoptosis. Biol Trace Elem Res 2023; 201:1946-1954.
26. Pabreja K, Dua K, Sharma S, Padi SS, Kulkarni SK. Minocycline attenuates the development of diabetic neuropathic pain: possible anti-inflammatory and anti-oxidant mechanisms. Eur J Pharmacol 2011; 661:15-21.
27. Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M, Yu G, et al. Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosc 2009; 10:126-141.
28. Garcez ML, Mina F, Bellettini-Santos T, Carneiro FG, Luz AP, Schiavo GL, et al. Minocycline reduces inflammatory parameters in the brain structures and serum and reverses memory impairment caused by the administration of amyloid β (1-42) in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 2017; 77:23-31.
29. Mehri S, Meshki MA, Hosseinzadeh H. Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats. Drug Chem Toxicol 2015; 38:162-166.
30. Habiniasl B, Ali MB, Charkhpour M, Hasanzadeh K. Evaluation the effects of systemic administration of minocycline and riluzole on tolerance to morphine analgesic effect in rat. Pharm Sci 2009; 15:205-212.
31. Nazemi S, Manaheji H, Zaringhalam J, Sadeghi M, Haghparast A. Post-injury repeated administrations of minocycline improve the antinociceptive effect of morphine in chronic constriction injury model of neuropathic pain in rat. Pharmacol Biochem Behav 2012; 102:520-525.
32. Mehri S, Shahi M, Razavi BM, Hassani FV, Hosseinzadeh H. Neuroprotective effect of thymoquinone in acrylamide-induced neurotoxicity in Wistar rats. Iran J Basic Med Sci 2014; 17:1007-1011.
33. Zhu Y-J, Zeng T, Zhu Y-B, Yu S-F, Wang Q-S, Zhang L-P, et al. Effects of acrylamide on the nervous tissue anti-oxidant system and sciatic nerve electrophysiology in the rat. Neurochem Res 2008; 33:2310-2317.
34. LoPachin RM, Barber DS, He D, Das S. Acrylamide inhibits dopamine uptake in rat striatal synaptic vesicles. Toxicol Sci 2006; 89:224-234.
35. Tomassoni D, Martinelli I, Moruzzi M, Micioni Di Bonaventura MV, Cifani C, Amenta F, et al. Obesity and age-related changes in the brain of the Zucker Lepr fa/fa rats. Nutrients 2020; 12:1356-1375.
36. Mehri S, Abnous K, Khooei A, Mousavi SH, Shariaty VM, Hosseinzadeh H. Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress. Iran J Basic Med Sci 2015; 18:902-908.
37. Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 1978; 86:271-278.
38. Araujo AR, Saraiva MLM, Lima JL. Determination of total and oxidized glutathione in human whole blood with a sequential injection analysis system. Talanta 2008; 74:1511-1519.
39. Caito SW, Aschner M. Quantification of glutathione in Caenorhabditis elegans. Curr Protoc Toxicol 2015; 64:6.18. 11-16.18. 16.
40. Sirot V, Hommet F, Tard A, Leblanc J-C. Dietary acrylamide exposure of the French population: results of the second French Total Diet Study. Food Chem Toxicol 2012; 50:889-894.
41. Krishnan M, Kang SC. Vitexin inhibits acrylamide-induced neuroinflammation and improves behavioral changes in zebrafish larvae. Neurotoxicol Teratol 2019; 74:106811.
42. Li S-x, Cui N, Zhang C-l, Zhao X-l, Yu S-f, Xie K-q. Effect of subchronic exposure to acrylamide induced on the expression of bcl-2, bax and caspase-3 in the rat nervous system. Toxicology 2006; 217:46-53.
43. LoPachin RM, Gavin T. Molecular mechanism of acrylamide neurotoxicity: Lessons learned from organic chemistry. Environmenta Health Perspect 2012; 120:1650-1657.
44. Kumar J, Das S, Teoh SL. Dietary acrylamide and the risks of developing cancer: Facts to ponder. Front Nutr 2018; 5:14-25.
45. Shukla PK, Khanna VK, Ali M, Maurya R, Handa S, Srimal R. Protective effect of Acorus calamus against acrylamide induced neurotoxicity. Phytother Res 2002; 16:256-260.
46. Bahadır E, Sancar M, Tarhan GG, Koçak E, Budancamanak Z, Karaaslan S, et al. Burn-induced distant organ injury in rats and the effect of minocycline. Marmara Med J 2017; 30:137-145.
47. Homsi S, Federico F, Croci N, Palmier B, Plotkine M, Marchand-Leroux C, et al. Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res 2009; 1291:122-132.
48. Aras M, Altas M, Motor S, Dokuyucu R, Yilmaz A, Ozgiray E, et al. Protective effects of minocycline on experimental spinal cord injury in rats. Injury 2015; 46:1471-1474.
49. Abbaszadeh A, Darabi S, Hasanvand A, Amini-Khoei H, Abbasnezhad A, Choghakhori R, et al. Minocycline through attenuation of oxidative stress and inflammatory response reduces the neuropathic pain in a rat model of chronic constriction injury. Iran J Basic Med Sci 2018; 21:138.
50. Zhao M, Wang FSL, Hu X, Chen F, Chan HM. Acrylamide-induced neurotoxicity in primary astrocytes and microglia: roles of the Nrf2-ARE and NF-κB pathways. Food Chem Toxicol 2017; 106:25-35.
51. Blum-Degena D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neuroscience lett 1995; 202:17-20.
52. Goudarzi M, Mombeini MA, Fatemi I, Aminzadeh A, Kalantari H, Nesari A, et al. Neuroprotective effects of Ellagic acid against acrylamide-induced neurotoxicity in rats. Neurol Res 2019; 41:419-428.
53. Santhanasabapathy R, Vasudevan S, Anupriya K, Pabitha R, Sudhandiran G. Farnesol quells oxidative stress, reactive gliosis and inflammation during acrylamide-induced neurotoxicity: behavioral and biochemical evidence. Neuroscience 2015; 308:212-227.
54. Padi SS, Kulkarni SK. Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol 2008; 601:79-87.
55. Tabeshpour J, Mehri S, Abnous K, Hosseinzadeh H. Neuroprotective effects of thymoquinone in acrylamide-induced peripheral nervous system toxicity through MAPKinase and apoptosis pathways in rat. Neurochem Res 2019; 44:1101-1112.
56. Guo J, Cao X, Hu X, Li S, Wang J. The anti-apoptotic, anti-oxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacol Toxicol 2020; 21:62-71.
57. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000; 6:797-801.
58. Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 2002; 417:74-78.
59. Wang X, Zhu S, Drozda M, Zhang W, Stavrovskaya IG, Cattaneo E, et al. Minocycline inhibits caspase-independent and-dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci USA 2003; 100:10483-10487.
60. Fang Y-Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition 2002; 18:872-879.
61. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008; 22:659–661.