1. Wardenbach E, Podlesek D, Alhasan B, Abouelhamd A, Eyüpoglu IY, Juratli TA, et al. Comparative efficacy of certoparin, enoxaparin, and combined thromboprophylaxis on thromboembolic events after glioblastoma resection: A prospective observational study. Sci Rep 2025; 15: 20784-20793.
2. Streiff MB, Ye X, Kickler TS, Desideri S, Jani J, Fisher J, et al. A prospective multicenter study of venous thromboembolism in patients with newly-diagnosed high-grade glioma: hazard rate and risk factors. J Neurooncol 2015; 124: 299-305.
3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987-996.
4. Alexander BM, Cloughesy TF. Adult glioblastoma. J Clin Oncol 2017; 35: 2402-2409.
5. Lan Z, Li X, Zhang X. Glioblastoma: An update in pathology, molecular mechanisms and biomarkers. Int J Mol Sci 2024; 25: 3040-3054.
6. Vredenburgh JJ, Desjardins A, Herndon JE, Dowell JM, Reardon DA, Quinn JA, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin cancer Res 2007; 13: 1253-1259.
7. Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: Insights from a mathematical model. Cancer Res 2007; 67: 2729-2735.
8. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007; 11: 83-95.
9. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58-62.
10. Tong RT, Boucher Y, Kozin S V, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004; 64: 3731-3736.
11. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001; 7: 987-989.
12. Salmaggi A, Eoli M, Frigerio S, Silvani A, Gelati M, Corsini E, et al. Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma. J Neurooncol 2003; 62: 297-303.
13. Lamszus K, Ulbricht U, Matschke J, Brockmann MA, Fillbrandt R, Westphal M. Levels of soluble vascular endothelial growth factor (VEGF) receptor 1 in astrocytic tumors and its relation to malignancy, vascularity, and VEGF-A. Clin Cancer Res 2003; 9: 1399-1405.
14. Tripathy DK, Panda LP, Biswal S, Barhwal K. Insights into the glioblastoma tumor microenvironment: Current and emerging therapeutic approaches. Front Pharmacol 2024; 15: 1355242-1355260.
15. Li A, Fang J. Anti‐angiogenic therapy enhances cancer immunotherapy: Mechanism and clinical application. Interdiscip Med 2024; 2: e20230025.
16. Wang L, Liu WQ, Broussy S, Han B, Fang H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front Pharmacol 2024; 14: 1307860-1307880.
17. Maccari M, Baek C, Caccese M, Mandruzzato S, Fiorentino A, Internò V, et al. Present and future of immunotherapy in patients with glioblastoma: limitations and opportunities. Oncologist 2024; 29: 289-302.
18. Sadowski K, Jażdżewska A, Kozłowski J, Zacny A, Lorenc T, Olejarz W. Revolutionizing glioblastoma treatment: A comprehensive overview of modern therapeutic approaches. Int J Mol Sci 2024; 25: 5774-5800.
19. Mazarakis NK, Robinson SD, Sinha P, Koutsarnakis C, Komaitis S, Stranjalis G, et al. Management of glioblastoma in elderly patients: A review of the literature. Clin Transl Radiat Oncol 2024; 46: 100761-100772.
20. Rios SA, Oyervides S, Uribe D, Reyes AM, Fanniel V, Vazquez J, et al. Emerging therapies for glioblastoma. Cancers (Basel) 2024; 16: 1485-1503.
21. Pathak A, Pal AK, Roy S, Nandave M, Jain K. Role of angiogenesis and its biomarkers in development of targeted tumor therapies. Stem Cells Int 2024; 2024: 9077926-9077949.
22. Zhang M, Zhang Z, Li H, Xia Y, Xing M, Xiao C, et al. Blockage of VEGF function by bevacizumab alleviates early-stage cerebrovascular dysfunction and improves cognitive function in a mouse model of Alzheimer’s disease. Transl Neurodegener 2024; 13: 1-24.
23. Yadav P, Vengoji R, Jain M, Batra SK, Shonka N. Pathophysiological role of histamine signaling and its implications in glioblastoma. Biochim Biophys acta Rev cancer 2024; 1879: 189146-189175.
24. Yuan X, Ruan W, Bobrow B, Carmeliet P, Eltzschig HK. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2024; 23: 175-200.
25. Pinkiewicz M, Pinkiewicz M, Walecki J, Zaczyński A, Zawadzki M. Breaking barriers in neuro-oncology: A scoping literature review on invasive and non-invasive techniques for blood-brain barrier disruption. Cancers (Basel) 2024; 16: 236-268.
26. Bigos KJA, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EGC, et al. Tumour response to hypoxia: Understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol 2024; 14: 1331355-1331382.
27. Musleh Ud Din S, Streit SG, Huynh BT, Hana C, Abraham AN, Hussein A. Therapeutic targeting of hypoxia-inducible factors in cancer. Int J Mol Sci 2024; 25: 2060-2075.
28. Dang SM, Yang D, Wang ZY, Ding XM, Li XL, Li DY, et al. Vasculogenic mimicry: A pivotal mechanism contributing to drug resistance in antiangiogenic therapy. Oncol Transl Med 2024; 10: 119-125.
29. Kiran NS, Yashaswini C, Maheshwari R, Bhattacharya S, Prajapati BG. Advances in precision medicine approaches for colorectal cancer: From molecular profiling to targeted therapies. ACS Pharmacol Transl Sci 2024; 7: 967-990.
30. Kang W, Xu Z, Lu H, Liu S, Li J, Ding C, et al. Advances in biomimetic nanomaterial delivery systems: Harnessing nature’s inspiration for targeted drug delivery. J Mater Chem B 2024; 12: 7001-7019.
31. Khafaga AF, Gaballa MMS, Karam R, Shoulah SA, Shamma RN, Khalifa NE, et al. Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer. Life Sci 2024; 341: 122499.
32. Cui JW, Li Y, Yang Y, Yang HK, Dong JM, Xiao ZH, et al. Tumor immunotherapy resistance: Revealing the mechanism of PD-1/PD-L1-mediated tumor immune escape. Biomed Pharmacother 2024; 171: 116203-116220.
33. Hu H, Chen Y, Tan S, Wu S, Huang Y, Fu S, et al. The research progress of antiangiogenic therapy, immune therapy and tumor microenvironment. Front Immunol 2022; 13: 802846-802857.
34. Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol 2018; 15: 310-324.
35. Khosravi G, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS, Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun 2024; 44: 521-553.
36. Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis 2024; 27: 333-349.
37. Du M, Sun L, Guo J, Lv H. Macrophages and tumor-associated macrophages in the senescent microenvironment: From immunosuppressive TME to targeted tumor therapy. Pharmacol Res 2024; 204: 107198-107214.
38. Fattahi AS, Jafari M, Farahavar G, Abolmaali SS, Tamaddon AM. Expanding horizons in cancer therapy by immunoconjugates targeting tumor microenvironments. Crit Rev Oncol Hematol 2024; 201: 104437.
39. Lu J, Luo Y, Rao D, Wang T, Lei Z, Chen X, et al. Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp Hematol Oncol 2024; 13: 39-63.
40. Liu J, Jiang Y, Chen L, Qian Z, Zhang Y. Associations between HIFs and tumor immune checkpoints: Mechanism and therapy. Discov Oncol 2024; 15: 2-22.
41. Chang WH, Lai AG. The hypoxic tumour microenvironment: A safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Lett 2020; 487: 34–44.
42. Ding Y, Wang Y, Hu Q. Recent advances in overcoming barriers to cell‐based delivery systems for cancer immunotherapy. In: Exploration. Wiley Online Library; 2022. p. 20210106.
43. Aragon-Sanabria V, Kim GB, Dong C. From cancer immunoediting to new strategies in cancer immunotherapy: The roles of immune cells and mechanics in oncology. Biomech Oncol 2018;1092: 113-138.
44. Nader NE, Frederico SC, Miller T, Huq S, Zhang X, Kohanbash G, et al. Barriers to T cell Functionality in the glioblastoma microenvironment. Cancers (Basel) 2024; 16: 3273-3303.
45. Harris HE, Raucci A. Alarmin(g) news about danger: Workshop on innate danger signals and HMGB1. EMBO Rep 2006; 7: 774-778.
46. Tang F, Tie Y, Tu C, Wei X. Surgical trauma-induced immunosuppression in cancer: Recent advances and the potential therapies. Clin Transl Med 2020; 10: 199-223.
47. Sharma B, McLeland CB, Potter TM, Stern ST, Adiseshaiah PP. Assessing NLRP3 inflammasome activation by nanoparticles. Methods Mol Biol 2018; 1682: 135-147.
48. Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X, Farber SH, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med 2018; 24: 1459-1468.
49. Kabashima K, Haynes NM, Xu Y, Nutt SL, Allende ML, Proia RL, et al. Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. J Exp Med 2006; 203: 2683-2690.
50. Galea I. The blood-brain barrier in systemic infection and inflammation. Cell Mol Immunol 2021; 18: 2489-2501.
51. Chen Z, Li G. Immune response and blood-brain barrier dysfunction during viral neuroinvasion. Innate Immun 2021; 27: 109-117.
52. Peters JJ, Teng C, Peng K, Li X. Deciphering the blood–brain barrier paradox in brain metastasis development and therapy. Cancers 2025; 17: 298-315.
53. Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020; 17: 69-93.
54. Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res 2022; 1788: 147937-147953.
55. Serlin Y, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol 2015; 38: 2-6.
56. Yu X, Ji C, Shao A. Neurovascular unit dysfunction and neurodegenerative disorders. Front Neurosci 2020; 14: 334-342.
57. Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, et al. Tight junction proteins at the blood–brain barrier: Far more than claudin-5. Cell Mol Life Sci 2019; 76: 1987-2002.
58. Kakogiannos N, Ferrari L, Giampietro C, Scalise AA, Maderna C, Ravà M, et al. JAM-A acts via C/EBP-α to promote claudin-5 expression and enhance endothelial barrier function. Circ Res 2020; 127: 1056-1073.
59. Feldman L. Hypoxia within the glioblastoma tumor microenvironment: A master saboteur of novel treatments. Front Immunol 2024; 15: 1384249-1384265.
60. O’Brown NM, Patel NB, Hartmann U, Klein AM, Gu C, Megason SG. The secreted neuronal signal Spock1 promotes blood-brain barrier development. Dev Cell 2023; 58: 1534-1547.
61. Pulido RS, Munji RN, Chan TC, Quirk CR, Weiner GA, Weger BD, et al. Neuronal activity regulates blood-brain barrier efflux transport through endothelial circadian genes. Neuron 2020; 108: 937-952.
62. Yang L, Lin Z, Mu R, Wu W, Zhi H, Liu X, et al. Neurons enhance blood-brain barrier function via upregulating claudin-5 and VE-cadherin expression due to glial cell line-derived neurotrophic factor secretion. Elife 2024; 13: RP96161-96190.
63. Zhang S, Kim B, Zhu X, Gui X, Wang Y, Lan Z, et al. Glial type specific regulation of CNS angiogenesis by HIFα-activated different signaling pathways. Nat Commun 2020; 11: 2027-2044.
64. Yuen TJ, Silbereis JC, Griveau A, Chang SM, Daneman R, Fancy SPJ, et al. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 2014; 158: 383-396.
65. Palhol JSC, Balia M, Sánchez-Román Terán F, Labarchède M, Gontier E, Battefeld A. Direct association with the vascular basement membrane is a frequent feature of myelinating oligodendrocytes in the neocortex. Fluids Barriers CNS 2023; 20: 24-41.
66. Kang R, Gamdzyk M, Lenahan C, Tang J, Tan S, Zhang JH. The dual role of microglia in blood-brain barrier dysfunction after stroke. Curr Neuropharmacol 2020; 18: 1237-1249.
67. Subramaniam SR, Federoff HJ. Targeting microglial activation states as a therapeutic avenue in Parkinson’s disease. Front Aging Neurosci 2017; 9: 176-194.
68. Ronaldson Patrick T, Davis Thomas P. Regulation of blood–brain barrier integrity by microglia in health and disease: A therapeutic opportunity. J Cereb Blood Flow Metab 2020; 40: S6-24.
69. Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 2019; 10: 5816-5833.
70.Mehrabadi AR, Korolainen MA, Odero G, Miller DW, Kauppinen TM. Poly(ADP-ribose) polymerase-1 regulates microglia mediated decrease of endothelial tight junction integrity. Neurochem Int 2017; 108: 266-271.
71. Profaci CP, Harvey SS, Bajc K, Zhang TZ, Jeffrey DA, Zhang AZ, et al. Microglia are not necessary for maintenance of blood-brain barrier properties in health, but PLX5622 alters brain endothelial cholesterol metabolism. Neuron 2024 ; 112: 2910-2921.
72. Tsai HC, Nguyen K, Hashemi E, Engleman E, Hla T, Han MH. Myeloid sphingosine-1-phosphate receptor 1 is important for CNS autoimmunity and neuroinflammation. J Autoimmun 2019; 105: 102290.
73. Zhang X, Gao R, Yang L, Zhu Y, Zhang T, Shen X, et al. Astrocytic functions and lipid metabolism: Correlations and therapeutic targets in Alzheimer’s disease and glioblastoma. Clin Transl Discov 2024; 4: 287.
74. An G, Wu F, Huang S, Feng L, Bai J, Gu S, et al. Effects of CCL5 on the biological behavior of breast cancer and the mechanisms of its interaction with tumor‑associated macrophages. Oncol Rep 2019; 42: 2499-2511.
75. Beniwal A, Dufault M, Kanvinde P, Nascari D, Eghlimi R, Malla A, et al. Abstract 6867: TWEAK-Fn14 signaling in glioblastoma-associated myeloid cells promotes tumor invasion via CCL5-CCR5 axis. Cancer Res 2024; 84: 6867.
76. Zhang L, Qu X, Xu Y. Molecular and immunological features of TREM1 and its emergence as a prognostic indicator in glioma. Front Immunol 2024; 15: 1324010-1324024.
77. Liang B, Wang Y, Huang J, Lin S, Mao G, Zhou Z, et al. Genome‐wide DNA methylation analysis identifies potent CpG signature for temzolomide response in non‐G‐CIMP glioblastomas with unmethylated MGMT promoter: MGMT‐dependent roles of GPR81. CNS Neurosci Ther 2024; 30: e14465-14481.
78. Lillo S, Derieppe M, Bomont D, Burban A, Martin O, Saleh M, et al. OS11.7.A Deletion of monocarboxylate transporter 1 in myeloid cells favours glioblastoma development. Neuro Oncol 2024; 26: v28-29.
79. Garcia Fallit M, Peña Agudelo JA, Nicola Candia AJ, Gonzalez N, Pérez Küper M, Zampini Y, et al. Targeting FOXP3 in glioblastoma: Blockade of tumor intrinsic effects boosts response to chemo-radiotherapy. Life Sci 2025; 378: 123822.
80. Cao W, He Y, Lan J, Luo S, Sun B, Xiao C, et al. FOXP3 promote the progression of glioblastoma via inhibiting ferroptosis mediated by linc00857/miR-1290/GPX4 axis. Cell Death Dis 2024; 15: 239.
81. Schweiger B, Kievit FM. Glioblastoma induced blood-brain barrier dysfunction via a paracrine mechanism that increases claudin-1 expression. Exp Brain Res 2025; 243: 70.
82. Hagemeyer H, Hellwinkel OJC, Plata-Bello J. Zonulin as gatekeeper in gut–brain axis: Dysregulation in glioblastoma. Biomedicines 2024; 12: 1649-1664.
83. Leone P, Malerba E, Susca N, Favoino E, Perosa F, Brunori G, et al. Endothelial cells in tumor microenvironment: insights and perspectives. Front Immunol 2024; 15: 1367875-1367896.
84. Tokumasu M, Nishida M, Zhao W, Chao R, Imano N, Yamashita N, et al. Metformin synergizes with PD-1 blockade to promote normalization of tumor vessels via CD8T cells and IFNγ. Proc Natl Acad Sci 2024; 121: e2404778121-2404778129.
85. Kuranaga Y, Yu B, Osuka S, Zhang H, Devi NS, Bae S, et al. Targeting integrin α3 Blocks β1 maturation, triggers endoplasmic reticulum stress, and sensitizes glioblastoma cells to TRAIL-mediated apoptosis. Cells 2024; 13: 753-770.
86. Zheng X, Yang J, Hou Y, Shi X, Liu K. Prediction of clinical progression in nervous system diseases: plasma glial fibrillary acidic protein (GFAP). Eur J Med Res 2024; 29: 51-66.
87. Varghese S, Madanan AS, Abraham MK, Shkhair AI, Indongo G, Rajeevan G, et al. Quantum dot-to-dye-based fluorescent ratiometric immunoassay for GFAP: A biomarker for ischaemic stroke and glioblastoma multiforme. Analyst 2025; 150: 329-341.
88. Avenel ICN, Ewald JD, Ariey-Bonnet J, Kristensen IH, Petterson SA, Thesbjerg MN, et al. GDNF/GFRA1 signaling contributes to chemo- and radioresistance in glioblastoma. Sci Rep 2024; 14: 17639-17652.
89. Begagić E, Bečulić H, Džidić-Krivić A, Kadić Vukas S, Hadžić S, Mekić-Abazović A, et al. Understanding the significance of hypoxia-inducible factors (HIFs) in glioblastoma: A systematic review. Cancers 2024; 16: 2089-2137.
90. Kang JY, Cho H, Gil M, Lee H, Park S, Kim KE. The novel prognostic marker SPOCK2 regulates tumour progression in melanoma. Exp Dermatol 2024; 33: e15092.
91. Yu P, Xu T, Ma W, Fang X, Bao Y, Xu C, et al. PRMT6-mediated transcriptional activation of ythdf2 promotes glioblastoma migration, invasion, and emt via the wnt–β-catenin pathway. J Exp Clin Cancer Res 2024; 43: 116-134.
92. Zhang X, Wang Z, Taohui O, Wang B, Joh RI, Huang S. Targeting Wnt/β-catenin activation in combination with temozolomide leads to glioblastoma inhibition and long-term survival in mice. Genes Dis 2025; 13: 101624-101638.
93. Wang J, Zhang J, Zhang Q, Zhang W, Zhang Q, Jin G, et al. TS-2021, a third-generation oncolytic adenovirus that carried Ki67 promoter, TGF-β2 5′UTR, and IL−15 against experimental glioblastoma. J Med Virol 2024 ; 96: e29335.
94. Golán-Cancela I, Caja L. The TGF-β family in glioblastoma. Int J Mol Sci 2024; 25: 1067-1089.
95. Ren T, Zheng Y, Liu F, Liu C, Zhang B, Ren H, et al. Identification and validation of JAM-A as a novel prognostic and immune factor in human tumors. Biomedicines 2024; 12: 1423-1443.
96. Elshawarby ZI, Bassyoni OY, El Ashry MS, Salama AI, Agina HA, Soliman AE. Evaluating immunohistochemical expression of junctional adhesion molecule - a (JAM- A) in multiple myeloma. Benha Med J 2025; In Press.
97. Redman JM, Hill EM, AlDeghaither D, Weiner LM. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 2015; 67: 28-45.
98. Tang J, Karbhari N, Campian JL. Therapeutic targets in glioblastoma: Molecular pathways, emerging strategies, and future directions. Cells 2025; 14: 494-520.
99. Huang B, Yan X, Li Y. Cancer stem cell for tumor therapy. Cancers (Basel) 2021; 13: 4814-4839.
100. Kleinlützum D, Hanauer JDS, Muik A, Hanschmann KM, Kays SK, Ayala-Breton C, et al. Enhancing the oncolytic activity of CD133-targeted measles virus: Receptor extension or chimerism with vesicular stomatitis virus are most effective. Front Oncol 2017; 7: 127-142.
101. Silver A, Feier D, Ghosh T, Rahman M, Huang J, Sarkisian MR, et al. Heterogeneity of glioblastoma stem cells in the context of the immune microenvironment and geospatial organization. Front Oncol 2022; 12: 1022716-1022737.
102. Yalamarty SSK, Filipczak N, Li X, Subhan MA, Parveen F, Ataide JA, et al. Mechanisms of resistance and current treatment options for glioblastoma multiforme (GBM). Cancers (Basel) 2023; 15: 2116-2153.
103. Jin J, Barnett JD, Mironchik Y, Gross J, Kobayashi H, Levin A, et al. Photoimmunotheranostics of epithelioid sarcoma by targeting CD44 or EGFR. Transl Oncol 2024; 45: 101966-101974.
104. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CLL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev 2015; 29: 1203-1217.
105. Piper K, DePledge L, Karsy M, Cobbs C. Glioma stem cells as immunotherapeutic targets: Advancements and challenges. Front Oncol 2021; 11: 615704-615717.
106. Sears TK, Wang W, Drumm M, Unruh D, McCord M, Horbinski C. F3 expression drives sensitivity to the antibody-drug conjugate tisotumab vedotin in glioblastoma. Cancers (Basel) 2025; 17: 834-845.
107. Bagley SJ, Logun M, Fraietta JA, Wang X, Desai AS, Bagley LJ, et al. Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results. Nat Med 2024; 30: 1320-1329.
108. Hou AJ, Shih RM, Uy BR, Shafer A, Chang ZL, Comin-Anduix B, et al. IL-13Rα2/TGF-β bispecific CAR-T cells counter TGF-β-mediated immune suppression and potentiate anti-tumor responses in glioblastoma. Neuro Oncol 2024; 26: 1850-1866.
109. Choi BD, Yu X, Castano AP, Bouffard AA, Schmidts A, Larson RC, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol 2019; 37: 1049-1058.
110. Li N, Rodriguez JL, Yin Y, Logun MT, Zhang L, Yu S, et al. Armored bicistronic CAR T cells with dominant-negative TGF-β receptor II to overcome resistance in glioblastoma. Mol Ther 2024; 32: 3522-3538.
111. Liu Y, Tan H, Dai J, Lin J, Zhao K, Hu H, et al. Targeting macrophages in cancer immunotherapy: Frontiers and challenges. J Adv Res 2025; 76: 695-713.
112. Gardell JL, Matsumoto LR, Chinn H, DeGolier KR, Kreuser SA, Prieskorn B, et al. Human macrophages engineered to secrete a bispecific T cell engager support antigen-dependent T cell responses to glioblastoma. J Immunother cancer 2020; 8: e001202-001216.
113. Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, et al. Glioma targeted therapy: Insight into future of molecular approaches. Mol Cancer 2022; 21: 39-71.
114. Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: Past, present, and opportunities. EBioMedicine 2024; 100: 104963-104983.
115. Sternjak A, Lee F, Thomas O, Balazs M, Wahl J, Lorenczewski G, et al. Preclinical assessment of AMG 596, a bispecific T-cell engager (BiTE) immunotherapy targeting the tumor-specific antigen EGFRvIII. Mol Cancer Ther 2021; 20: 925-933.
116. Gutova M, Hibbard JC, Ma E, Natri HM, Adhikarla V, Chimge NO, et al. Targeting Wnt signaling for improved glioma immunotherapy. Front Immunol 2024; 15: 1342625-1342639.
117. Patel J, Aittaleb R, Doherty R, Gera A, Lau B, Messinger D, et al. Liquid biopsy in H3K27M diffuse midline glioma. Neuro Oncol 2024; 26: S101-109.
118. Kato T, Okada R, Furusawa A, Inagaki F, Wakiyama H, Furumoto H, et al. Simultaneously combined cancer cell- and CTLA4-targeted NIR-PIT causes a synergistic treatment effect in syngeneic mouse models. Mol Cancer Ther 2021; 20: 2262-2273.
119. Maruoka Y, Furusawa A, Okada R, Inagaki F, Fujimura D, Wakiyama H, et al. Combined CD44- and CD25-targeted near-infrared photoimmunotherapy selectively kills cancer and regulatory T cells in syngeneic mouse cancer models. Cancer Immunol Res 2020; 8: 345-355.
120. Kurago Z, Guo G, Shi H, Bollag RJ, Groves MW, Byrd JK, et al. Inhibitors of the CD73-adenosinergic checkpoint as promising combinatory agents for conventional and advanced cancer immunotherapy. Front Immunol 2023; 14: 1212209-1212218.
121. Gogia P, Ashraf H, Bhasin S, Xu Y. Antibody-drug conjugates: A review of approved drugs and their clinical level of evidence. Cancers (Basel) 2023; 15: 3886-3918.
122. Li L, Zhu X, Qian Y, Yuan X, Ding Y, Hu D, et al. Chimeric antigen receptor T-cell therapy in glioblastoma: current and future. Front Immunol 2020; 11: 594271-594280.
123. De Domenico P, Gagliardi F, Roncelli F, Snider S, Mortini P. Tumor-infiltrating and circulating B cells mediate local and systemic immunomodulatory mechanisms in Glioblastoma. J Neurooncol 2025; 172: 527-548.
124. Li T, Jiang S, Zhang Y, Luo J, Li M, Ke H, et al. Nanoparticle-mediated TRPV1 channel blockade amplifies cancer thermo-immunotherapy via heat shock factor 1 modulation. Nat Commun 2023; 14: 2498-2523.
125. Eckert T, Zobaer MS, Boulos J, Alexander-Bryant A, Baker TG, Rivers C, et al. Immune resistance in glioblastoma: understanding the barriers to ICI and CAR-T cell therapy. Cancers (Basel) 2025; 17: 462-480.
126. Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, López-Janeiro A, Porciuncula A, Idoate MA, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med 2019; 25: 470-476.
127. de Groot J, Penas-Prado M, Alfaro-Munoz K, Hunter K, Pei BL, O’Brien B, et al. Window-of-opportunity clinical trial of pembrolizumab in patients with recurrent glioblastoma reveals predominance of immune-suppressive macrophages. Neuro Oncol 2020; 22: 539-549.
128. Rahimi M, Fattahi A. Acidity enhancement of α-carbon of beta diketones via hydroxyl substituents: A density functional theory study. J Phys Org Chem 2021; 34: e4157.
129. Zhou Y, Shi F, Zhu J, Yuan Y. An update on the clinical trial research of immunotherapy for glioblastoma. Front Immunol 2025; 16: 1582296-1582313.
130. Edner NM, Carlesso G, Rush JS, Walker LSK. Targeting co-stimulatory molecules in autoimmune disease. Nat Rev Drug Discov 2020; 19: 860-883.
131. Sloan AE, Winter K, Gilbert MR, Aldape K, Choi S, Wen PY, et al. NRG-BN002: Phase I study of ipilimumab, nivolumab, and the combination in patients with newly diagnosed glioblastoma. Neuro Oncol 2024; 26: 1628-1637.
132. Lassman A, Polly MY, Iwamoto F, Sloan A, Wang T, Aldape K, et al. CTIM-18. NRG oncology study BN007: Randomized phase ii/iii trial of ipilimiumab (ipi) plus nivolumab (nivo) vs. temozolomide (tmz) in mgmt-unmethylated (UMGMT) newly diagnosed glioblastoma (NGBM). Neuro Oncol 2023; 25: v65.
133. Jiacheng D, Jiayue C, Ying G, Shaohua W, Wenhui L, Xinyu H. Research progress and challenges of the PD-1/PD-L1 axis in gliomas. Cell Biosci 2024; 14: 123-136.
134. Pearson JRD, Cuzzubbo S, McArthur S, Durrant LG, Adhikaree J, Tinsley CJ, et al. Immune escape in glioblastoma multiforme and the adaptation of immunotherapies for treatment. Front Immunol 2020; 11: 582106-582132.
135. Li D, Rudloff U. Emerging therapeutics targeting tumor-associated macrophages for the treatment of solid organ cancers. Expert Opin Emerg Drugs 2025; 30: 109-147.
136. Geynisman DM. The end of the beginning-lessons from the first 10 years as an oncologist. J Clin Oncol Off J Am Soc Clin Oncol 2021; 39: 2516-2517.
137. Zhao RJ, Fan XX. Advances in antibody-based immune-stimulating drugs: Driving innovation in cancer therapy. Int J Mol Sci 2025; 26: 1440-1455.
138. Rannikko JH, Hollmén M. Clinical landscape of macrophage-reprogramming cancer immunotherapies. Br J Cancer 2024; 131: 627-640.
139. Sweet K, Cluzeau T. Clinical perspectives on post-induction maintenance therapy in patients with acute myeloid leukaemia in remission who are ineligible for allogeneic haematopoietic stem cell transplantation. Br J Haematol 2025; 206: 61-68.
140. Mahalingam D, Harb W, Patnaik A, Bullock A, Watnick RS, Vincent MY, et al. First-in-human phase I dose escalation trial of the first-in-class tumor microenvironment modulator VT1021 in advanced solid tumors. Commun Med 2024; 4: 10-22.
141. Jayabalan N, Oronsky B, Cabrales P, Reid T, Caroen S, Johnson AM, et al. A review of RRx-001: A late-stage multi-indication inhibitor of NLRP3 activation and chronic inflammation. Drugs 2023; 83: 389-402.
142. Maute R, Xu J, Weissman IL. CD47-SIRPα-targeted therapeutics: Status and prospects. Immunooncol Technol 2022; 13: 100070-100083.
143. Shi R, Chai Y, Duan X, Bi X, Huang Q, Wang Q, et al. The identification of a CD47-blocking “hotspot” and design of a CD47/PD-L1 dual-specific antibody with limited hemagglutination. Signal Transduct Target Ther 2020; 5: 16-19.
144. Chen JJ, Vincent M, Peereboom DM, Watnick R, Fyfe S, Li W, et al. Immune profiling in patients with glioblastoma treated with VT1021 in a phase I/II expansion study. Am Soc Clin Oncol 2023; 41:1.
145. Zannikou M, Duffy JT, Levine RN, Seblani M, Liu Q, Presser A, et al. IL15 modification enables CAR T cells to act as a dual targeting agent against tumor cells and myeloid-derived suppressor cells in GBM. J Immunother Cancer 2023; 11: e006239-6252.
146. Julia Z, Adrian K, Anna M, Joanna Z, Monika L. Strategies to overcome tumor microenvironment immunosuppressive effect on the functioning of CAR-T cells in high-grade glioma. Ther Adv Med Oncol 2024; 16: 1-21.
147. Alsajjan R, Mason WP. Bispecific T-cell engagers and chimeric antigen receptor T-cell therapies in glioblastoma: An update. Cur Oncol 2023; 30: 8501-8549.
148. Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F, et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J cancer 2002; 100: 690-697.
149. Iurlaro R, Waldhauer I, Planas-Rigol E, Bonfill-Teixidor E, Arias A, Nicolini V, et al. A novel EGFRvIII T-cell bispecific antibody for the treatment of glioblastoma. Mol Cancer Ther 2022; 21: 1499-1509.
150. Singh K, Hotchkiss KM, Mohan AA, Reedy JL, Sampson JH, Khasraw M. For whom the T cells troll? Bispecific T-cell engagers in glioblastoma. J Immunother cancer 2021; 9: e003679-3691.
151. Moon D, Tae N, Park Y, Lee SW, Kim DH. Development of bispecific antibody for cancer immunotherapy: Focus on T cell engaging antibody. Immune Netw 2022; 22: 4-26.
152. Phillips AC, Boghaert ER, Vaidya KS, Falls HD, Mitten MJ, DeVries PJ, et al. Characterization of ABBV-221, a tumor-selective EGFR-targeting antibody drug conjugate. Mol Cancer Ther 2018; 17: 795-805.
153. Bao X, Pastan I, Bigner DD, Chandramohan V. EGFR/EGFRvIII-targeted immunotoxin therapy for the treatment of glioblastomas via convection-enhanced delivery. Recept Clin Investig 2016; 3: 1430-1437.
154. Parker S, McDowall C, Sanchez-Perez L, Osorio C, Duncker PC, Briley A, et al. Immunotoxin-αCD40 therapy activates innate and adaptive immunity and generates a durable antitumor response in glioblastoma models. Sci Transl Med 2025; 15: eabn5649-5683.
155. Kwan K, Schneider JR, Kobets A, Boockvar JA. Targeting epidermal growth factor receptors in recurrent glioblastoma via a novel epithelial growth factor receptor-conjugated nanocell doxorubicin delivery system. Neurosurgery 2018; 82: 23-24.
156. Whittle JR, Lickliter JD, Gan HK, Scott AM, Simes J, Solomon BJ, et al. First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma. J Clin Neurosci 2015; 22: 1889-1894.
157. Eller JL, Longo SL, Hicklin DJ, Canute GW. Activity of anti-epidermal growth factor receptor monoclonal antibody C225 against glioblastoma multiforme. Neurosurgery 2002; 51: 1005-1013.
158. Li D, Sun X, Li Y, Shang C, Dong Y, Zhao R, et al. AGCM-22, a novel cetuximab-based EGFR-targeting antibody-drug-conjugate with highly selective anti-glioblastoma efficacy. Bioorg Med Chem 2024; 102: 117657.
159. Habibi MA, Rashidi F, Gharedaghi H, Fathi Tavani S, Farzalizadeh H, Shahir Eftekhar M, et al. Are EGFR monoclonal antibodies associated with clinical benefits in patients with glioma: a systematic review, meta-analysis, and specific analysis on glioblastoma and diffuse intrinsic pontine glioma. Neurosurg Rev 2025; 48: 226.
160. Brown MK, Cai Z, Georgiou CJ, Chen S, Ganga-Sah Y, Radchenko V, et al. Auger electron-emitting EGFR-targeted and non-targeted [(197)Hg]Hg-gold nanoparticles for treatment of glioblastoma multiforme (GBM). EJNMMI Radiopharm Chem 2025; 10: 45-65.
161. Dhiman A, Shah Y, Rana D, Garkhal K. Comprehensive review on glioblastoma: nanotechnology, immunotherapy and combined therapeutic approaches. RSC Pharmaceutics. 2025; 2: 207-234.
162. Al Ghafari M, El Jaafari N, Mouallem M, Maassarani T, El Sibai M, Abi‑Habib R. Key genes altered in glioblastoma based on bioinformatics (Review). Oncol Lett 2025; 29: 1-16.
163. Lee KW, Han SW, Kim TW, Ahn JB, Baek JY, Cho SH, et al. A Phase 1b/2a study of GC1118 with 5-fluorouracil, leucovorin and irinotecan (FOLFIRI) in patients with recurrent or metastatic colorectal cancer. Cancer Res Treat 2023; 56: 590-601.
164. Iwamoto FM, Tanguturi SK, Nayak L, Wang TJ, Desai A, Lustig RA, et al. Re-irradiation plus pembrolizumab: A phase II study for patients with recurrent glioblastoma. Clin Cancer Res 2025; 31: 316-327.
165. Takimoto CH, Wick MJ. Oncolytic viruses targeting CD47: A new road to success? J Immunother Cancer 2025; 13: e01155-e01158.
166. Daver N, Senapati J, Kantarjian HM, Wang B, Reville PK, Loghavi S, et al. Azacitidine, venetoclax, and magrolimab in newly diagnosed and relapsed refractory acute myeloid leukemia: Phase Ib/II Study and correlative analysis. Clin Cancer Res 2025; 31: 2386-2398.
167. Singh K, Hotchkiss KM, Cook SL, Noldner P, Zhou Y, Moelker EM, et al. IL-7-mediated expansion of autologous lymphocytes increases CD8+ VLA-4 expression and accumulation in glioblastoma models. J Clin Invest 2025; 135: e181471-181487.
168. Shikalov A, Koman I, Kogan NM. Targeted glioma therapy—clinical trials and future directions. Pharmaceutics 2024; 16: 100-139.
169. Ćwiklińska A, Przewodowska D, Koziorowski D, Szlufik S. Innovative approaches to brain cancer: The use of magnetic resonance-guided focused ultrasound in glioma therapy. Cancers 2024; 16: 4235-4257.
170. Vykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood–brain barrier disruption. Ultrasonics 2008; 48: 279-296.
171. Kovacs ZI, Kim S, Jikaria N, Qureshi F, Milo B, Lewis BK, et al. Disrupting the blood–brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci 2017; 114: E75-84.
172. Choi HJ, Han M, Seo H, Park CY, Lee EH, Park J. The new insight into the inflammatory response following focused ultrasound-mediated blood-brain barrier disruption. Fluids Barriers CNS 2022; 19: 103-124.
173. Ji R, Karakatsani ME, Burgess M, Smith M, Murillo MF, Konofagou EE. Cavitation-modulated inflammatory response following focused ultrasound blood-brain barrier opening. J Control release Off J Control Release Soc 2021; 337: 458-471.
174. Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol 2021; 17: 7-22.
175. Salvato I, Marchini A. Immunotherapeutic strategies for the treatment of glioblastoma: Current challenges and future perspectives. Cancers (Basel) 2024; 16: 1276-1334.
176. ter Linden E, Abels ER, van Solinge TS, Neefjes J, Broekman MLD. Overcoming barriers in glioblastoma—advances in drug delivery strategies. Cells 2024; 13: 998-1017.
177. Kamali MJ, Saeedi F, Khoshghiafeh A, Mir MA, Aram C, Ahmadifard M. Therapeutic targeting of triple-negative breast cancer: A multi-model evaluation of LNA-anti-miR-19b-3p and small molecule inhibitors. Comput Biol Med 2025; 196: 110771.
178. Luksik AS, Yazigi E, Shah P, Jackson CM. CAR T cell therapy in glioblastoma: overcoming challenges related to antigen expression. Cancers (Basel) 2023; 15: 1414-1432.
179. Atik AF, Suryadevara CM, Schweller RM, West JL, Healy P, Herndon II JE, et al. Hyaluronic acid based low viscosity hydrogel as a novel carrier for Convection Enhanced Delivery of CAR T cells. J Clin Neurosci 2018; 56: 163-168.
180. Babič D, Jovčevska I, Zottel A. B7-H3 in glioblastoma and beyond: Significance and therapeutic strategies. Front Immunol 2024; 15: 1495283-1495304.
181. De Pauw T, De Mey L, Debacker JM, Raes G, Van Ginderachter JA, De Groof TWM, et al. Current status and future expectations of nanobodies in oncology trials. Expert Opin Investig Drugs 2023; 32: 705-721.
182. Li D, Wang R, Liang T, Ren H, Park C, Tai CH, et al. Camel nanobody-based B7-H3 CAR-T cells show high efficacy against large solid tumours. Nat Commun 2023; 14: 5920-5937.
183. Drappatz J, Brenner A, Wong ET, Eichler A, Schiff D, Groves MD, et al. Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res 2013; 19: 1567-1576.
184. Cai X, Refaat A, Gan PY, Fan B, Yu H, Thang SH, et al. Angiopep-2-functionalized lipid cubosomes for blood–brain barrier crossing and glioblastoma treatment. ACS Appl Mater Interfaces 2024; 16: 12161-12174.
185. Liu J, Sun Y, Zeng X, Liu Y, Liu C, Zhou Y, et al. Engineering and characterization of an artificial drug‐carrying vesicles nanoplatform for enhanced specifically targeted therapy of glioblastoma. Adv Mater 2023; 35: 2303660.
186. Hartl N, Adams F, Merkel OM. From adsorption to covalent bonding: Apolipoprotein E functionalization of polymeric nanoparticles for drug delivery across the blood–brain barrier. Adv Ther 2021; 4: 2000092-2000133.
187. Wei J, Wu D, Shao Y, Guo B, Jiang J, Chen J, et al. ApoE-mediated systemic nanodelivery of granzyme B and CpG for enhanced glioma immunotherapy. J Control Release 2022; 347: 68-77.
188. Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol 2019; 181: 101665.
189. Ashrafzadeh MS, Akbarzadeh A, Heydarinasab A, Ardjmand M. In vivo glioblastoma therapy using targeted liposomal cisplatin. Int J Nanomedicine 2020; 15: 7035-7049.
190. Liu Y, Wang Z, Tang Z, Fu Y, Wang L. Mirna-383-5p functions as an anti-oncogene in glioma through the Akt/mTOR signaling pathway by targeting VEGFA. Curr Cancer Drug Targets. 2024; 24: 463-475.
191. Puris E, Fricker G, Gynther M. Targeting transporters for drug delivery to the brain: Can we do better? Pharm Res 2022; 39: 1415-1455.
192. Hersh AM, Alomari S, Tyler BM. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology. Int J Mol Sci 2022; 23: 4153-4181.
193. Zou GJ, Chen ZR, Wang XQ, Cui YH, Li F, Li CQ, et al. Microglial activation in the medial prefrontal cortex after remote fear recall participates in the regulation of auditory fear extinction. Eur J Pharmacol 2024; 978: 176759.
194. You W, Zhou Z, Li Z, Yan J, Wang Y. From foe to friend: Rewiring oncogenic pathways through artificial selenoprotein to combat immune-resistant tumor. J Pharm Anal 2025; 12: 101322.
195. Andersen JK, Miletic H, Hossain JA. Tumor-associated macrophages in gliomas—basic insights and treatment opportunities. Cancers 2022; 14: 1319-1344.
196. Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Rüttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer 2017; 5: 53-66.
197. Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, Duerinck J, et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci 2021; 24: 595-610.
198. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 2013; 19: 1264-1272.
199. Saha D, Martuza RL, Rabkin SD. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 2017; 32: 253-267.
200. Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT, et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 2016; 352: aad3018-3056.
201. Teer L, Yaddanapudi K, Chen J. Biophysical control of the glioblastoma immunosuppressive microenvironment: Opportunities for immunotherapy. Bioengineering 2024; 11: 1946-1962.
202. Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol 2015; 15: 73-86.
203. Cendrowicz E, Sas Z, Bremer E, Rygiel TP. The role of macrophages in cancer development and therapy. Cancers (Basel) 2021; 13: 1946-1968.
204. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev 2018; 32: 1267-1284.
205. Alban TJ, Bayik D, Otvos B, Rabljenovic A, Leng L, Jia-Shiun L, et al. Glioblastoma myeloid-derived suppressor cell subsets express differential macrophage migration inhibitory factor receptor profiles that can be targeted to reduce immune suppression. Front Immunol 2020; 11: 1191-1207.
206. Sharma P, Aaroe A, Liang J, Puduvalli VK. Tumor microenvironment in glioblastoma: Current and emerging concepts. Neuro-Oncology Adv 2023; 5: vdad009-25.
207. Rodriguez SM, Tataranu LG, Kamel A, Turliuc S, Rizea RE, Dricu A. Glioblastoma and immune checkpoint inhibitors: A glance at available treatment options and future directions. Int J Mol Sci 2024; 25: 10765-10786.
208. Gromeier M, Nair SK. Recombinant poliovirus for cancer immunotherapy. Annu Rev Med 2018; 69: 289-299.
209. Saha D, Martuza RL, Rabkin SD. Oncolytic herpes simplex virus immunovirotherapy in combination with immune checkpoint blockade to treat glioblastoma. Immunotherapy 2018; 10: 779-786.
210. Menon H, Ramapriyan R, Cushman TR, Verma V, Kim HH, Schoenhals JE, et al. Role of radiation therapy in modulation of the tumor stroma and microenvironment. Front Immunol 2019; 10: 193-206.
211. Bulut N, Simsek E. Didymin exhibits different cytotoxicity patterns on U-87 MG human glioblastoma cells and orchestrates the release of substance P (SP) and interleukin-6 (IL-6) in a time depending manner. Eurasian J Med Oncol 2023; 7: 326-333.
212. Wang X, Zhou Q, Zhang X, Hu H, Liu B, Wang Y. Oncolytic viruses: A promising therapy for malignant pleural effusion and solid tumors. Front Immunol 2025; 16: 1570698-1570714.
213. Harrington KJ, Puzanov I, Hecht JR, Hodi FS, Szabo Z, Murugappan S, et al. Clinical development of talimogene laherparepvec (T-VEC): A modified herpes simplex virus type-1-derived oncolytic immunotherapy. Expert Rev Anticancer Ther 2015; 15: 1389-1403.
214. Zamarin D, Ricca JM, Sadekova S, Oseledchyk A, Yu Y, Blumenschein WM, et al. PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy. J Clin Invest 2018; 128: 1413-1428.
215. Wang G, Wang W. Advanced cell therapies for glioblastoma. Front Immunol 2022; 13: 904133-904149.
216. Guedan S, Ruella M, June CH. Emerging cellular therapies for cancer. Annu Rev Immunol 2019; 37: 145-1471.
217. Yip A, Webster RM. The market for chimeric antigen receptor T cell therapies. Nat Rev Drug Discov 2018; 17: 161-162.
218. Burger MC, Zhang C, Harter PN, Romanski A, Strassheimer F, Senft C, et al. CAR-engineered NK cells for the treatment of glioblastoma: Turning innate effectors into precision tools for cancer immunotherapy. Front Immunol 2019; 10: 2683-2699.
219. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol 2008; 9: 503-510.
220. Otegbeye F, Ojo E, Moreton S, Mackowski N, Lee DA, de Lima M, et al. Inhibiting TGF-beta signaling preserves the function of highly activated, in vitro expanded natural killer cells in AML and colon cancer models. PLoS One 2018; 13: e0191358.
221. Shaim H, Shanley M, Basar R, Daher M, Gumin J, Zamler DB, et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J Clin Invest 2021; 131: e142116-142131.
222. Hu Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci Rep 2020; 10: 2815-2828.
223. Jiang D, Li Y. Unraveling the immunosuppressive microenvironment of glioblastoma and advancements in treatment. Front Immunol 2025; 16: 1590781-1590790.
224. Daubon T, Hemadou A, Romero Garmendia I, Saleh M. Glioblastoma immune landscape and the potential of new immunotherapies. Front Immunol 2020; 11: 585616-585633.
225. Pawlowski KD, Duffy JT, Gottschalk S, Balyasnikova IV. Cytokine modification of adoptive chimeric antigen receptor immunotherapy for glioblastoma. Cancers (Basel) 2023; 15: 5852-5868.
226. Tazhibi M, McQuillan N, Wei HJ, Gallitto M, Bendau E, Webster Carrion A, et al. Focused ultrasound-mediated blood–brain barrier opening is safe and feasible with moderately hypofractionated radiotherapy for brainstem diffuse midline glioma. J Transl Med 2024; 22: 320-333.
227. Zhao X, Jakobsson V, Tao Y, Zhao T, Wang J, Khong PL, et al. Targeted radionuclide therapy in glioblastoma. ACS Appl Mater Interfaces 2024; 16: 40391-40410.
228. Brown M, Cai Z, Kondo M, Chen S, Weatherall N, Radchenko V, et al. Convection-enhanced delivery (CED) of 197Hg-labeled gold nanoparticles to orthotopic human GBM tumors in mice as a potential auger electron-emitting radiation nanomedicine for GBM. J Nucl Med 2024; 65: 241831.
229. Meeus F, Funeh CN, Awad RM, Zeven K, Autaers D, De Becker A, et al. Preclinical evaluation of antigen-sensitive B7-H3-targeting nanobody-based CAR-T cells in glioblastoma cautions for on-target, off-tumor toxicity. J Immunother Cancer 2024; 12: e009110-9126.
230. Shirvalilou S, Khoei S, Afzalipour R, Ghaznavi H, Shirvaliloo M, Derakhti Z, et al. Targeting the undruggable in glioblastoma using nano-based intracellular drug delivery. Med Oncol 2024; 41: 303.
231. Ren B, Liang J, Liu Y, Zhang Y, Ma X, Lei P, et al. Proguanil inhibits proliferation and migration in glioblastoma development through targeting CSF1R receptor. Cell Signal 2025; 127: 111550.
232. Badani A, Ozair A, Khasraw M, Woodworth GF, Tiwari P, Ahluwalia MS, et al. Immune checkpoint inhibitors for glioblastoma: emerging science, clinical advances, and future directions. J Neurooncol 2025; 171: 531-547.
233. Keshavarz M, Dianat-Moghadam H, Ghorbanhosseini SS, Sarshari B. Oncolytic virotherapy improves immunotherapies targeting cancer stemness in glioblastoma. Biochim Biophys Acta Gen Subj 2024; 1868: 130662.
234. Strassheimer F, Elleringmann P, Ludmirski G, Roller B, Macas J, Alekseeva T, et al. CAR-NK cell therapy combined with checkpoint inhibition induces an NKT cell response in glioblastoma. Br J Cancer 2025; 132: 849-860.
235. Alishvandi A, Barancheshemeh M, Firuzpour F, Aram C, Kamali MJ, Keikha M. Decoding virulence and resistance in klebsiella pneumoniae: Pharmacological insights, immunological dynamics, and in silico therapeutic strategies. Microb Pathog 2025; 205: 107691.
236. Montoya M, Gallus M, Phyu S, Haegelin J, de Groot J, Okada H. A roadmap of CAR-T-cell therapy in glioblastoma: Challenges and future perspectives. Cells 2024; 13: 726-752.
237. Lin Q, Wei Y, Xu G, Wang L, Ling F, Chen X, et al. Integrative multi-omic profiling of the neoantigen landscape of glioblastoma for the development of therapeutic vaccines reveals vast heterogeneity in immunogenic signatures. Front Oncol 2025; 15: 1507632-1507642.
238. Wang C, Yu M, Zhang W. Neoantigen discovery and applications in glioblastoma: An immunotherapy perspective. Cancer Lett 2022; 550: 215945-215951.
239. Maali A, Gholizadeh M, Feghhi-Najafabadi S, Noei A, Seyed-Motahari SS, Mansoori S, et al. Nanobodies in cell-mediated immunotherapy: On the road to fight cancer. Front Immunol 2023; 14: 1012841-1012860.
240. Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol 2017; 8: 1603-1616.
241. De Vlaminck K, Romão E, Puttemans J, Pombo Antunes AR, Kancheva D, Scheyltjens I, et al. Imaging of glioblastoma tumor-associated myeloid cells using nanobodies targeting signal regulatory protein alpha. Front Immunol 2021; 12: 777524-777538.
242. Tambi R, Zehra B, Vijayakumar A, Satsangi D, Uddin M, Berdiev BK. Artificial intelligence and omics in malignant gliomas. Physiol Genomics 2024; 56: 876-895.
243. Liu Z, Han Y, Dang Q, Xu H, Zhang Y, Duo M, et al. Roles of circulating tumor DNA in PD-1/PD-L1 immune checkpoint Inhibitors: Current evidence and future directions. Int Immunopharmacol 2022; 111: 109173.
244. Zhu H, You Y, Shen Z, Shi L. EGFRvIII-CAR-T cells with PD-1 knockout have improved anti-glioma activity. Pathol Oncol Res 2020; 26: 2135-2141.
245. Alen R, Nenad K, Soldo KA, Robert R. Artificial intelligence in glioblastoma—transforming diagnosis and treatment. Chinese Neurosurg J 2025; 11: 109-117.
246. Contreras K, Velez-Varela PE, Casanova-Carvajal O, Alvarez AL, Urbano-Bojorge AL. A review of artificial intelligence-based systems for non-invasive glioblastoma diagnosis. Life 2025; 15: 643-657.
247. Shen S, Qi W, Liu X, Zeng J, Li S, Zhu X, et al. From virtual to reality: Innovative practices of digital twins in tumor therapy. J Transl Med 2025; 23: 348-379.
248. Elias MG, Hadjiyiannis H, Vafaee F, Scott KF, de Souza P, Becker TM, et al. The quest for non-invasive diagnosis: A review of liquid biopsy in glioblastoma. Cancers 2025; 17: 2700-2725.
249. Wang H, Hu Y, Chu Z, Luo Y, Feng X, Ou Sh, et al. Inhibitory effect of antitumor activity extract from the celastrus orbiculatus thunb on human glioblastoma. Int J Pharmacol 2023; 19: 758-768.
250. Olawade DB, Clement David-Olawade A, Adereni T, Egbon E, Teke J, Boussios S. Integrating AI into cancer immunotherapy—a narrative review of current applications and future directions.Diseases 2025; 13: 24-49.
251. Cheung EYW, Wu RWK, Li ASM, Chu ESM. AI deployment on GBM diagnosis: A novel approach to analyze histopathological images using image feature-based analysis. Cancers 2023; 15: 5063-5081.
252. Kato T, Okada R, Furusawa A, Inagaki F, Wakiyama H, Furumoto H, et al. Simultaneously combined cancer cell- and CTLA4-targeted NIR-PIT causes a synergistic treatment effect in syngeneic mouse models. Mol Cancer Ther 2021; 20: 2262-2273.
253. Lee EQ. Immune checkpoint inhibitors in GBM. J Neurooncol 2021; 155: 1-11.
254. Lv K, Du X, Chen C, Yu Y. Research hotspots and trend of glioblastoma immunotherapy: A bibliometric and visual analysis. Front Oncol 2024; 14: 1361530-136146.
255. Bruzzone F, Barigazzi C, Di Muzio A, Tallarico I, Dipasquale A, Losurdo A, et al. Exploring the role of ADCs in brain metastases and primary brain tumors: Insight and future directions. Cancers 2025; 17: 1591-1628.
256. Hou J, Uejima T, Tanaka M, Son YL, Hanada K, Kukimoto-Niino M, et al. EVA1-antibody drug conjugate is a new therapeutic strategy for eliminating glioblastoma-initiating cells. Neuro Oncol 2025; 27: 682-694.
257. Feng Y, Haupt B, Huynh TT, Meshaw R, Martin-Regalado A, Thakur A, et al. Longitudinal imaging reveals tumor uptake and prolonged retention of bispecific T cell–engaging antibody in GBM via passive and active mechanisms. Clin Cancer Res 2025; 31: 3537-3549.
258. Feng Y, Haupt B, Huynh T, Meshaw R, Duffy J, Alzeer A, et al. In vivo imaging of bispecific T-cell engagaging (BiTE) antibody radiolabeled with a 124I-containing prosthetic agent: Understanding the dynamics in GBM. J Nucl Med 2025; 66: 251606-251606.
259. Tanaka T, Suzuki H, Ohishi T, Kawada M, Kaneko MK, Kato Y. Antitumor activities by a humanized cancer‐specific anti‐podoplanin monoclonal antibody humPMab‐117 against human tumors. Cancer Sci 2025; 116: 2232-2242.
260. Italiano A, Yonemori K, Haddox CL, Ahnert JR, Penel N, Schöffski P, et al. Abstract CT113: A first-in-human phase 1, multicenter, open-label study of M3554, a novel anti-GD2 antibody-drug conjugate (ADC), in patients with advanced solid tumors. Cancer Res 2025; 85: CT113–CT113.
261. Bian Y, Wang Y, Chen X, Zhang Y, Xiong S, Su D. Image-guided diagnosis and treatment of glioblastoma. VIEW 2023; 4: 20220069.