1. Marlovits P, Zeller P, Singer C, Resinger V. Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 2006; 57:24–31.
2. Kuo K, LiWan J, Mauck L, Tuan S. Cartilage tissue engineering: it’s potential and uses. Curr Opin Rheumatol 2006; 18:64-73.
3. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007; 89:780-785.
4. Ahmed N, Stanford WL, Kandel RA. Mesenchymal stem and progenitor cells for cartilage repair. Skeletal Radiol 2007;36:909-12.
5. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331:889-895.
6. Esfandiari E, Nazem Kh, Safdarian A, Fesharaki M, Moulavi F, Shakibaei M, et al . Treatment of full thickness cartilage defects in human knees with Autologous Chondrocyte Transplantation. Res Med Sci 2011; 16:855–861.
7. Esfandiary E, Shakibaei M, Amirpour N, Razavi Sh, Nasresfahani M, Moulavi F, et al. Study of human chondrocyte redifferntiation capacity in three-dimensional hydrogel culture. Iran J Basic Med Sci 2008; 11:152-158.
8. Raghunath J, Salacinski J, Sales M, Butler E, Seifalian M. Advancing cartilage tissue engineering: the application of stem cell technology. Curr Opin Biotechnol 2005; 16:503-509.
9. Song H, Chang W, Song BW, Hwang KC. Specific differentiation of mesenchymal stem cells by small molecules. Am J Stem Cells 2012; 1:22-30.
10. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al . Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13:4279-4295.
11. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al . Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7:211-28.
12. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008; 60: 243-62.
13. Hashemibeni B, Razavi S, Esfandiary E, Karbasi S, Mardani M, Nasresfahani M. Induction of chondrogenic differentiation of human adipose-derived stem cells with TGF-β3 in pellet culture system. Iran J Basic Med Sci 2008; 11:10-17.
14. Ansar M, Esfandiariy E, Mardani M, Hashemibeni B, Zarkesh H, Hatef M, et al. A comparative study of aggrecan synthesis between natural articular chondrocytes and differentiated chondrocytes from adipose derived stem cells in 3D culture. Adv Biomed Res 2012; 1:30-37.
15. Yue X, Balooch G, Chio M, Bekerman E, Ritchie R, Longaker M. Analysis of the material properties of early chondrogenic differentiated adipose-derived stromal cells using an in in vitro three dimentional micromass culture system. Biochem Biophys Res Commun 2007; 359:311-316.
16. Xu J, Wang W, Clark C, Brighton T. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthritis Cartilage 2009; 17:397-405.
17. Esfandiary E, Valiani A, Hashemibeni B, Moradi I, Narimani M. The evaluation of toxicity of carbon nanotubes on the human adipose-derived-stem cells in vitro. Adv Biomed Res 2013; 4:17-25.
18. Yan J, Dong L, Zhang B, Qi N. Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagn Biol Med 2010; 29:165-176.
19.Mardani M, Hashemibeni B, Ansar M, Zarkesh Esfahani H, Kazemi M, Goharian V, et al . Comparison between chondrogenic markers of differentiated chondrocytes from adipose derived stem cells and articular chondrocytes In vitro. Iran J Basic Med Sci 2013; 16:763-771.
20. Creecy C, Neill C, Arulanandam B, Sylvia V, Navara C, Bizios R. Mesenchymal stem cell osteodifferentiation in response to alternating electric current. Tissue Eng 2012; 19:10-17.
21. Seth M, McQuilling J, Grossfeld R, Lubischer J, Clarke L, Loboa E. Application of low-frequency alternating current electric fields Via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells. Tissue eng 2010; 16:1377-1366.
22. Hronik-Tupaj M, Rice W, Cronin-Golomb M, Kaplan D, Georgakoudi I. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields. Biomed Eng 2011; 10:9-15.
23. Hammerick K, James A, Huang Z, Prinz F, Longaker F. Pulsed direct current electric fields enhance osteogenesis in adipose-derived stromal cells. Tissue eng 2010; 16:917-931.
24. Mayer-Wagner S, Passberger A, Sievers B, Aigner J, Summer B, Schiergens T, et al . Effects of low frequency electromagnetic fields on the chondrogenic differentiationof human mesenchymal stem cells. Bioelectromagnetics 2011; 32:283-290.
25. Wang W, Wang Z, Zhang G, Clark C, Brighton C. Up-regulation of chondrocytes matrix genes and products by electric fields. Clin Orthop Relat Res 2004; 427:5163-5173.
26. Gan J, Fredericks D, Glazer P. Direct current and capacitive coupling electrical stimulation upregulates osteopromotive factors for spinal fusions. Spine 2005; 15:15-22.
27. Goodwin C, Brighton C, Guyer R. A double blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 1999; 24:1349-1357