1. Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JS: Chronic hypoxia-induced upregulation of store-operated and receptor-operated ca2+ channels in pulmonary arterial smooth muscle cells: A novel mechanism of hypoxic pulmonary hypertension. Circ Res 2004; 95:496-505.
2. Yu L, Quinn DA, Garg HG, Hales CA: Cyclin-dependent kinase inhibitor p27kip1, but not p21waf1/cip1, is required for inhibition of hypoxia-induced pulmonary hypertension and remodeling by heparin in mice. Circ Res 2005; 97:937-945.
3. Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, Trembath RC, Jennings S, Barker L, Nicklin P, Walker C, Budd DC, Pepke-Zaba J, Morrell NW: Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 2010; 122:920-927.
4. Murray F, MacLean MR, Pyne NJ: Increased expression of the cgmp-inhibited camp-specific (pde3) and cgmp binding cgmp-specific (pde5) phosphodiesterases in models of pulmonary hypertension. Br J Pharmacol 2002; 137:1187-1194.
5. Yu L, Hales CA: Effect of chemokine receptor cxcr4 on hypoxia-induced pulmonary hypertension and vascular remodeling in rats. Respir Res 2011; 12:21.
6. Kanazawa H, Asai K, Nomura S: Vascular endothelial growth factor as a non-invasive marker of pulmonary vascular remodeling in patients with bronchitis-type of copd. Respir Res 2007; 8:22.
7. Calbet JA: Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol 2003; 551:379-386.
8. Arias-Stella J, Saldana M: The terminal portion of the pulmonary arterial tree in people native to high altitudes. Circulation 1963; 28:915-925.
9. Stenmark KR, Fagan KA, Frid MG: Hypoxia-induced pulmonary vascular remodeling: Cellular and molecular mechanisms. Circ Res 2006; 99:675-691.
10. Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, van Rooijen N, Stenmark KR: Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol 2006; 168:659-669.
11. Fahim M: Cardiovascular sensory receptors and their regulatory mechanisms. Indian J Physiol Pharmacol 2003; 47:124-146.
12. Noll G, Wenzel RR, Binggeli C, Corti C, Luscher TF: Role of sympathetic nervous system in hypertension and effects of cardiovascular drugs. Eur Heart J 1998; 19 Suppl F:F32-38.
13. Ainslie PN, Ogoh S: Regulation of cerebral blood flow in mammals during chronic hypoxia: A matter of balance. Exp Physiol 2010; 95:251-262.
14. Hainsworth R, Drinkhill MJ: Cardiovascular adjustments for life at high altitude. Respir Physiol Neurobiol 2007; 158:204-211.
15. Neubauer JA, Sunderram J: Oxygen-sensing neurons in the central nervous system. J Appl Physiol 2004; 96:367-374.
16. Xie A, Skatrud JB, Puleo DS, Morgan BJ: Exposure to hypoxia produces long-lasting sympathetic activation in humans. J Appl Physiol 2001; 91:1555-1562.
17. Velez-Roa S, Ciarka A, Najem B, Vachiery JL, Naeije R, van de Borne P: Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation 2004; 110:1308-1312.
18. Missant C, Rex S, Claus P, Derde S, Wouters PF: Thoracic epidural anaesthesia disrupts the protective mechanism of homeometric autoregulation during right ventricular pressure overload by cardiac sympathetic blockade: A randomised controlled animal study. Eur J Anaesthesiol 2011; 28:535-543.
19. Premkumar DR, Mishra RR, Overholt JL, Simonson MS, Cherniack NS, Prabhakar NR: L-type ca(2+) channel activation regulates induction of c-fos transcription by hypoxia. J Appl Physiol 2000; 88:1898-1906.
20. Rowell LB, Johnson DG, Chase PB, Comess KA, Seals DR: Hypoxemia raises muscle sympathetic activity but not norepinephrine in resting humans. J Appl Physiol 1989; 66:1736-1743.
21. Missant C, Rex S, Claus P, Derde S, Wouters PF: Thoracic epidural anaesthesia disrupts the protective mechanism of homeometric autoregulation during
right ventricular pressure overload by cardiac sympathetic blockade: A randomised controlled animal study. Eur J Anaesthesiol 2011; 28:535-543.
22. Svorkdal N: Treatment of inoperable coronary disease and refractory angina: Spinal stimulators, epidurals, gene therapy, transmyocardial laser, and counterpulsation. Semin Cardiothorac Vasc Anesth 2004; 8:43-58.
23. Kock M, Blomberg S, Emanuelsson H, Lomsky M, Stromblad SO, Ricksten SE: Thoracic epidural anesthesia improves global and regional left ventricular function during stress-induced myocardial ischemia in patients with coronary artery disease. Anesth Analg 1990; 71:625-630.
24. Ishibe Y, Shiokawa Y, Umeda T, Uno H, Nakamura M, Izumi T: The effect of thoracic epidural anesthesia on hypoxic pulmonary vasoconstriction in dogs: An analysis of the pressure-flow curve. Anesth Analg 1996; 82:1049-1055.
25. Rex S, Missant C, Segers P, Wouters PF: Thoracic epidural anesthesia impairs the hemodynamic response to acute pulmonary hypertension by deteriorating right ventricular-pulmonary arterial coupling. Crit Care Med 2007; 35:222-229.
26. Brimioulle S, Vachiery JL, Brichant JF, Delcroix M, Lejeune P, Naeije R: Sympathetic modulation of hypoxic pulmonary vasoconstriction in intact dogs. Cardiovasc Res 1997; 34:384-392.