1.Strumpf M, Willweber-Strumpf A, Zenz M. Opioids: modern concepts of pain management. Med Klin (Munich) 2006; 101:139-145.
2.Bramham CR, Sarvey JM. Endogenous activation of m and d-1 opioid receptors is required for long-term potentiation induction in the lateral perforant path: dependence on GABAergic inhibition. J Neurosci 1996; 16:8123-8131.
3.Bao G, Kang L, Li H, Li Y, Pu L, Xia P, et al. Morphine and heroin differentially modulate in vivo hippocampal LTP in opiate dependent rat. Neuropsychopharmacology 2007; 32:1738-1749.
4.Li Z, Wu CF, Pei G, Xu NJ. Reversal of morphine-induced memory impairment in mice by withdrawal in Morris water maze: possible involvement of cholinergic system. Pharmacol Biochem Behav 2001; 68:507-513.
5.MiladiGorji H, Rashidy-Pour A, Fathollahi Y. Effects of morphine dependence on the performance of rats in reference and working versions of the water maze. Physiol Behav 2008; 93:622-627.
6.Yang XF, Xiao Y, Xu MY. Both endogenous and exogenous ACh plays antinociceptive role in the hippocampus CA1 of rats. J Neural Transm 2008; 115:1-6.
7.Mojtahedin A, Tamaddonfard E, Zanbouri A. Role of central muscarinic cholinergic receptors in the formalin-induced pain in rats. Indian J Pharmacol 2009; 41:144-147.
8.Li B, Duysen EG, Volpicelli-Daley LA, Levey AI, Lockridge O. Regulation of muscarinic acetylcholine receptor function in acetylcholinesterase knockout mice. Pharmacol Biochem Behav 2003; 74:977-986.
9.Hartvig P, Gillberg PG, Gordh T Jr, Post C. Cholinergic mechanisms in pain and analgesia. Trends Pharmacol Sci 1989; 12:75-79.
10.Chen SR, Wess J, Pan HL. Functional activity of the M2 and M4 receptor subtypes in the spinal cord studied with muscarinic acetylcholine receptor knockout mice. J Pharmacol Exp Ther 2005; 313:765-770.
11.Taguchi K, Kato M, Kikuta J, Abe K, Chikuma T, Utsunomiya I, et al. The effects of morphine-induced increases in extracellular acetylcholine levels in the rostral ventrolateral medulla of rat. J Pharmacol Exp Ther 1999; 289:1539-1544.
12.McKenna JE, Melzack R. Blocking NMDA receptors in the hippocampal dentate gyrus with AP5 produces analgesia in the formalin pain test. Exp Neurol 2001; 172:92-99.
13.Buño W, Cabezas C, Fernández de Sevilla D. Presynaptic muscarinic control of glutamatergic synaptic transmission. J Mol Neurosci 2006; 30:161-164.
14.Bramham CR, Sarvey JM. Endogenous activation of mu and delta-lopioid recptors is required for long-term potentiation induction in the lateral perforantpath: dependence on GABAergic inhibition. J Neurosci 1996; 16:8123-8131.
15.Jiao RS, Yang CX, Zhang Y, Xu MY, Yang XF. Cholinergic mechanism involved in the nociceptive modulation of dentate gyrus. Biochem Biophys Res Commun 2009; 379:975-979.
16.Xiao Y, Yang XF, Xu MY. Effect of acetylcholine on pain-related electric activities in hippocampal CA1 area of normal and morphinistic rats. Neurosci Bull 2007; 23:323-328.
17.Zhao CY, Yan LX, Lu N, Zhang JY, Xu MY. Making the model quickly for morphinomania in rats. J Harbin Med University 2001; 35:257-258.
18.Pellegrino LJ, Pellegrino AS, Cushmanl AJ. A stereotaxic atlas of the rat brain. 2nd ed. New York: Plenum Press; 1979.p.81-84.
19.Zhang Y, Yang CX, Xu XZ, Jiao RS, Jin HB, Lv YH, et al. Morphine dependence changes the role of droperidol on pain-related electric activities in caudate nucleus. Biochem Biophys Res Commun 2008; 372:179-185.
20.Shi TF, Yang CX, Yang DX, Jiao RS, Zhang GW, Gao HR, et al. MK-801 changes the role of glutamic acid on modulation of algesia in nucleus accumbens. Biochem Biophys Res Commun 2011; 395:407-411.
21.Zhang XT. The integration of thalamus in the process of acupuncture analgesia. Sci China 1973; 1:28-52.
22.Sun MZ, Chen LS, Gu HL, Cheng J, Yue LS. Effect of acupuncture on unit discharge in nucleus parafascicularis of rat thalamus. Sheng li Xue Bao 1980; 32:207-213.
23.Li GZ, Liang QC, Jin YH, Yang CX, Zhang GW, Gao HR, et al. The effect of acetylcholine on pain-related electric activities in the hippocampal CA3 of rats. J Neural Transm 2011; 118:555-561.
24.Yaksh TL, Dirksen R, Harty GJ. Antinociceptive effects of intrathecally injected cholinomimetic drugs in the rat and cat. Eur J Pharmacol 1985; 117:81-88.
25.Khanna S, Zheng F. Morphine reversed formalin-induced CA1 pyramidal cell suppression via an effect on septohippocampal neural processing. Neurosci 1999; 89:61-71.
26.Zhang HL, Han R, Chen ZX, Chen BW, Gu ZL, Reid PF, et al. Opiate and acetylcholine-independent analgesic actions of crotoxin isolated from crotalus durissus terrificus venom. Toxicon 2006; 48:175-182.
27.Nogueira-Neto FS, Amorim RL, Brigatte P, Picolo G, Jr Ferreira WA, Gutierrez VP, et al. The analgesic effect of crotoxin on neuropathic pain is mediated by central muscarinic receptors and 5-lipoxygenase-derived mediators. Pharmacol Biochem Behav 2008; 91:252-260.
28.Xu ZM, Tong CY, Pan HL, Cerda SE, Eisenach JC. Intravenous morphine increases release of nitric oxide from spinal cord by an a-adrenergic and cholinergic mechanism. J Neurophysiol 1997; 78:2072-2078.
29.Kremin T, Hasselmo ME. Cholinergic suppression of glutamatergic synaptic transmission in hippocampal region CA3 exhibits laminar selectivity: Implication for hippocampal network dynamics. Neurosci 2007; 149:760-767.
30.Kahn L, Alonso G, Normand E, Manzoni OJ. Repeated morphine treatment alters polysialylated neural cell adhesion molecule, glutamate decarboxylase-67 expression and cell proliferation in the adult rat hippocampus. Eur J Neurosci 2005; 21:493-500.