Anticonvulsant Activity of Hydroalcoholic Extract and Aqueous Fraction of Ebenus stellata in Mice

Document Type : Original Article


1 Department. of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran

2 Department of Biotechnology, Research & Science Campus, Azad University, Tehran, Ira

3 Department of Medical Biotechnology, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran


Fabaceae is the third largest family of flowering plants. Lack of essential oils in the plants of this family can be considered as an advantage and can favor them in search for safe and antiepileptic medicines. The effects of Fabacea familyplants including Ebenus stellata (E. stellata), Sophora alopecuroides and Caesalpinia gilliiesii were evaluated in pentylenetetrazole (PTZ) and maximal electroshock (MES) seizure tests.
Materials and Methods
The hydroalcoholic extracts were obtained by percolation of 100 g aerial parts ofeach plant in 900 ml ethanol 80%. Acute toxicity of the extracts was assessed. Non-toxic doses of the extracts were injected to the mice intraperitoneally (i.p.) and occurrence of clonic seizures induced by PTZ (60 mg/kg, i.p.) or tonic seizures induced by MES (50 mA, 50 Hz, 1 sec), were monitored up to 30 min after each administration. The anticonvulsant extract was then fractionated by dichloromethane and water. Phytochemical screening of the effective extract was also carried out by thin layer chromatography to verify active constituents.
Among theextracts used, only E. stellata had no toxicity and inhibited clonic seizures in a significant and dose-dependent (3-7 g/kg) manner with ED50 of 4 g/kg. Fractionation of the extract resulted in dose-dependent (1-5 g/kg) anticonvulsant activity, which was observed in aqueous fraction with ED50 of 1.74 g/kg. Phytochemical screening revealed the presence of terpens/sterols, alkaloids, flavonoids, tannin and saponins in the extract.
The presence of anticonvulsant compounds in E. stellata suggestsfurther activity-guided fractionation and analytical studies to find the potential of this plant as a source of anticonvulsant agents.


1. Vezzani M, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol 2011; 7:31-40.
2. Schmidt D, Loscher W. Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia 2005; 46:858-877.
3. Schrire BD, Lewis GP, Lavin M. Biogeography of the Leguminosae. In: Lewis G, Schrire G, Mackinder B, Lock M, editors. Legumes of the world. First ed. Kew: Royal Botanic Gardens; 2005. p. 21–54.
4. Ojewole JA. Analgesic and anticonvulsant properties of Tetrapleura tetraptera (Taub) (Fabaceae) fruit aqueous extract in mice. Phytother Res 2005; 19: 1023-1029.
5. Ojewole JA. Anticonvulsant property of Sutherlandia frutescens R. BR. (variety Incana E. MEY.) (Fabaceae) shoot aqueous extract. Brain Res Bull 2008; 75: 126-132.
6. Kasture VS, Chopde CT, Deshmukh VK. Anticonvulsive activity of Albizzia lebbeck, Hibiscus rosa sinesis and Butea monosperma in experimental animals. J Ethnopharmacol  2000; 71:65-75.
7. Kasture VS, Deshmukh VK, Chopde CT. Anxiolytic and anticonvulsive activity of Sesbania grandiflora leaves in experimental animals. Phytother Res 2002; 16:455-460.
8. Kasture VS, Kasture SB, Chopde CT. Anticonvulsive activity of Butea monosperma flowers in laboratory animals. Pharmacol Biochem Behav 2002; 72:965-972.
9. Haruna AK. Depressant and anticonvulsant properties of the root decoction of Afrormosia laxiflora (Leguminosae). Phytother Res  2000; 14:57-59.
10. Vasconcelos SM, Lima NM, Sales GT, Cunha GM, Aguiar LM, Silveira ER. Anticonvulsant activity of hydroalcoholic extracts from Erythrina velutina and Erythrina mulungu. J Ethnopharmacol  2007; 110:271-274.
11. Van Wyk BE, Albrecht C. A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J Ethnopharmacol 2008; 119:620-629.
12. Salih MA, Mustafa AA. A substance in broad beans (Vicia faba) is protective against experimentally induced convulsions in mice. Epilepsy Behav 2008; 12:25-29.
13. Aldarmaa J, Liu Z, Long J, Mo X, Ma J, Liu J. Anti-convulsant effect and mechanism of Astragalus mongholicus extract in vitro and in vivo: protection against oxidative damage and mitochondrial dysfunction. Neurochem Res 2010; 35: 33-41.
14. Ambawade SD, Kasture VS, Kasture SB. Anticonvulsant activity of roots and rhizomes of Glycyrrhiza glabra. Indian J Pharmacol 2002; 4:251-255.
15. Yazdi A, Sardari S, Sayyah M, Hassanpour Ezzati M. Evaluation of the anticonvulsant activity of the leaves of Glycyrrhiza glabra var. glandulifera grown in Iran, as a possible renewable source for anticonvulsant compounds. Iran J Pharm Res  2011; 10:75-82.
16. Wagner H, Bladt S.  Plant Drug Analysis. 2nd ed. Berlin: Springer; 1996. p. 299-304.
17. Stahl E. Thin Layer Chromatography. 2nd ed. Berlin: Springer; 1969. p. 52-85.
18. Litchfield ST, Wilcoxon F.A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther  1949; 96:99-105.
19. Loscher W, Schmidt D. Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 1988; 2:145-181.
20. Gareri P, Condorelli D, Belluardo N, Gratteri S, Ferreri G, Donato Di Paola E, et al. Influence of carbenoxolone on the anticonvulsant efficacy of conventional antiepileptic drugs against audiogenic seizures in DBA/2 mice. Eur J Pharmacol 2004; 484:49-56.
21. Nassiri-Asl M, Shariati-rad S, Zamansoltani F. Anticonvulsant effects of intracerebroventricular administration of rutin in rats. Prog Neuropsychopharmacol Biol Psychiatry  2008; 32:989-993.
22. Pal D, Sannigrahi S, Mazumder UK. Analgesic and anticonvulsant effects of saponin isolated from the leaves of Clerodendrum infortunatum Linn. in mice. Indian J Exp Biol  2009; 47:743-747.
23. Chindo BA, Anuka JA, McNeil L, Yaro AH, Adamu SS, Amos S, et al. Anticonvulsant properties of saponins from Ficus platyphylla stem bark. Brain Res Bull  2010; 78:276-282.
24. Bhutada P, Mundhada Y, Bansod K, Dixit P, Umathe S, Mundhada D. Anticonvulsant activity of berberine, an isoquinoline alkaloid in mice. Epilepsy Behav 2010; 18:207-210.
25. Coulter DA, Hugenard JR, Prince DA. Characterization of the ethosuximide reduction in low-threshold calcium current in thalamic neurons. Ann Neurol 1989; 25:582-593.
26. Macdonald RL, Kelly KM. Antiepileptic drugs mechanisms of action. Epilepsia 1995; 36:S2-S12.
27. Velisek L, Kusa R, Kulovana M, Mares P. Excitatory amino acid antagonists and pentylenetetrazole-induced seizures during ontogenesis. I. The effects of 2-amino-7-phosphonoheptanoate. Life Sci 1990; 46:1349-1357.
28. Ren L, Wang F, Xu Z, Chan WM, Zhao C, Xue H. GABA(A) receptor subtype selectivity underlying anxiolytic effect of 6-hydroxyflavone. Biochem Pharmacol  2010; 79:1337-1344.
29. Wang F, Xu Z, Ren L, Tsang SY, Xue H. GABAA receptor subtype selectivity underlying selective anxiolytic effect of baicalin. Neuropharmacology 2008; 55:1231-1237. 
30. Nilsson J, Sterner O. Modulation of GABA (A) receptors by natural products and the development of novel synthetic ligands for the benzodiazepine binding site. Curr Drug Targets 2011; 12:1674-88. Review.
31. Zhang XN, Li JM, Yang Q, Feng B, Liu SB, Xu ZH, et al. Anti-apoptotic effects of hyperoside via inhibition of NR2B-containing NMDA receptors. Pharmacol Rep  2010; 62: 949-955. 
32. Huang R, Singh M, Dillon GH. Genistein directly inhibits native and recombinant NMDA receptors. Neuropharmacology  2010; 58:1246-1251.
33. Faggion SA, Cunha AO, Fachim HA, Gavin AS, dos Santos WF, Pereira AM, et al. Anticonvulsant profile of the alkaloids (+)-erythravine and (+)-11-α-hydroxy-erythravine isolated from the flowers of Erythrina mulungu Mart ex Benth (Leguminosae-Papilionaceae). Epilepsy Behav 2011; 20:441-446. 
34. Bhutada P, Mundhada Y, Bansod K, Dixit P,Umathe S, Mundhada D. Anticonvulsant activity of berberine, an isoquinoline alkaloid in mice. Epilepsy Behav 2010; 18:207-210.
35. Longhi-Balbinot DT, Pietrovski EF, Gadotti VM, Martins DF, Facundo VA, Santos AR. Spinal antinociception evoked by the triterpene 3beta, 6beta, 16beta-trihydroxylup-20(29)-ene in mice: evidence for the involvement of the glutamatergic system via NMDA and metabotropic glutamate receptors. Eur J Pharmacol  2009; 623:30-36.
36. Kim S, Kim T, Ahn K, Park WK, Nah SY, Rhim H. Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem Biophys Res Commun  2004; 323:416-424.
37. Fülep GH, Hoesl CE, Höfner G, Wanner KT. New highly potent GABA uptake inhibitors selective for GAT-1 and GAT-3 derived from (R)- and (S)-proline and homologous pyrrolidine-2-alkanoic acids. Eur J Med Chem 2006; 41: 809-824.
38. Chindo BA, Anuka JA, McNeil L, Yaro AH, Adamu SS, Amos S, et al. Anticonvulsant properties of saponins from Ficus platyphylla stem bark. Brain Res Bull  2009; 78:276-282.