1. Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C, et al. Abnormal patterns of insulin secretion in non-insulindependent diabetes. N Engl J Med 1988; 318:1231–1239.
2. Hasslacher C. Safety and efficacy of repaglinide in type 2 diabetic patients with and without impaired renal function. Diabetes Care 2003; 26:886–891.
3. Yale JF. Oral antihyperglycemic agents and renal disease: new agents, new concepts. J Am Soc Nephrol 2005; 16:7–10.
4. Gumieniczek A.Oxidative stress in kidney and liver of alloxan-induced diabetic rabbits: effect of repaglinide. Acta Diabetol 2005; 42:75–81.
5. Tankova T, Koev D, Dakovska L, Kirilov G. The effect of repaglinide on insulin secretion and oxidative stress in type2 diabetic patients. Diabetes Res Clin Pract 2003; 59:43–49.
6. Haugen E, Nath KA. The involvement of oxidative stress in the progression of renal injury. Blood Purif 1999; 17:58–65.
7. Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 2013; 1830:3217–3266.
8. Ponticelli C. Cyclosporine: from renal transplan-tation to autoimmune diseases. Ann NY Acad Sci 2005; 1051: 551–558.
9. Busauschina A, Schnuelle P, Van der Woude FJ. Cyclosporine nephrotoxicity. Transplant Proc 2004; 36:229S–233S.
10. O'Connell S, Tuite N, Slattery C, Ryan MP, McMorrow T. Cyclosporine A induced oxidative stress in human renal mesangial cells: a role for ERK 1/2 MAPK signaling. Toxicol Sci 2012; 1261:101–113.
11. Ateşşahin A, Çeribaı OA, Yılmaz S. Lycopene, a carotenoid, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rats. Basic Clin Pharmacol Toxicol 2007; 100:372–376.
12. Hagar HH, Eman EE, Maha A: Taurine attenuates hypertension and renal dysfunction induced by cyclosporine A in rats. Clin Exp Pharmacol Physiol 2006; 33:189–196.
13. Salant DJ, Cybulsky AV. Experimental glomerulo-nephritis. Methods Enzymol 1988; 162:421–461.
14. Price RJ: Urinary N-acetyl-β-D- glucosaminidase (NAG) as an indicator of renal disease. Curr Probl Clin Biochem 1979; 9:150–163.
15. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351–358.
16. Misra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide-dismutase. J Biol Chem 1972; 247:3170–3175.
17. Beutler E, Durom O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963; 61:882–888.
18. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249:7130–7139.
19. Flohe L, Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol 1984; 105:114–121.
20. Smith IK, Vierheller TL, Thorne CA. Rassay of glutathione reductase in crude tissue homogenates using 5,5'-dithiobis (2-nitrobenzoic acid). Anal Biochem 1988; 175:408–413.
21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem 1951; 193:265–275.
22. Gao H, Zhou YW. Inhibitory effect of picroside II on hepatocyte apoptosis. Acta Pharmacol Sin 2005; 26:729–736.
23. Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 1999; 424:83–95.
24. Del RD, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 2005; 15: 316–328.
25. Kim J, Jung KJ, Park KM. Reactive oxygen species differently regulate renal tubular epithelial and interstitial cell proliferation after ischemia and reperfusion injury. Am J Physiol Renal Physiol 2010; 298:F1118–1129.
26. Khan RA, Khan MR, Sahreen S. Evaluation of Launaea procumbens use in renal disorders: a rat model. J Ethnopharmacol 2010; 128:452–461.
27. Aikemu A, Yusup A, Umar A, Berké B, Moore N, Upur H. The impact of the Uighur medicine abnormal savda munziq on antitumor and antioxidant activity in a S180 and Ehrlich ascites carcinoma mouse tumor model. Pharmacogn Mag 2012; 8:141–148.
28. Catalá A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 2009; 157:1–11.
29. Yadav P, Sarkar S, Bhatnagar D. Action of Capparis deciduas against alloxan-induced oxidative stress and diabetes in rat tissues. Pharmacol Res 1997; 36:221–228.
30. Gumieniczek A. Effects of repaglinide on oxidative stress in tissues of diabetic rabbits. Diab Res Clin Pract 2005; 68:89-95.
31. Maritim AC, Sanders RA, Watkins JB. Effects of α-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats. J Nutr Biochem 2003; 14:288–294.
32. Raza H. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease. FEBS J 2011; 278:4243–4251.
33. Brezniceanu ML, Lau CJ, Godin N, Chénier I, Duclos A, Ethier J, et al. Reactive oxygen species promote caspase-12 expression and tubular apoptosis in diabetic nephropathy. J Am Soc Nephrol 2010; 21:943–994.
34. Habib SL. Alterations in tubular epithelial cells in diabetic nephropathy. J Nephrol 2013; 26:865–869.
35. Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int 1999; 56:1627–1637.
36. Backman JT, Kajosaari LI, Niemi M, Nevvonen PJ. Cyclosporine A increases plasma concentrations and effects of repaglinide. Am J Transplant 2006; 6:2221–2222.