Developmental effect of light deprivation on synaptic plasticity of rats' hippocampus: implications for melatonin

Document Type : Original Article


1 Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran

2 Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran


Objective(s): There are few reports have demonstrated the effect of a change-in-light experience on the structure and function of hippocampus. A change-in-light experience also affects the circadian pattern of melatonin secretion. This study aimed to investigate developmental effect of exogenous melatonin on synaptic plasticity of hippocampus of light deprived rats.
Materials and Methods: The effects of  intracerebroventricular (ICV) injection of 2μg/5μl melatonin was evaluated on the basic and tetanized field excitatory post-synaptic potentials (fEPSPs) recorded in the hippocampal CA3-CA1 pathway of normal light-reared (LR) and dark-reared (DR) rats at 2, 4, and 6 weeks of age. Using RT-PCR and western blotting, developmental changes in the expression of melatonin receptors, MT1 and MT2, in the hippocampus were also evaluated.
Results: The amplitude of basic responses decreased across age in the LR rats. While light deprivation increased the amplitude of baseline fEPSPs, it decreased the degree of potentiation in post-tetanus responses. Melatonin injection also increased the amplitude of fEPSPs and suppressed the induction of long-term potentiation in both LR and DR rats. The expression of melatonin receptors increased in the hippocampus during brain development, and dark rearing reversed the expression patterns of both receptors.
Conclusion: Although melatonin changed basic and tetanized responses of CA1 neurons across age during critical period of brain development, the pattern of its effects did not match the expression pattern of melatonin receptors in the hippocampus. Thus, the effects of melatonin on hippocampal neuronal responses may be exerted through other ways, like intercellular molecules and nuclear hormone receptors.


1. Voss P. Sensitive and critical periods in visual sensory deprivation. Front Psychol 2013; 4:664.
2. Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci 2005; 6: 877-888.
3. Morishita H, Hensch TK. Critical period revisited: impact on vision. Curr Opin Neurobiol 2008; 18:101-107.
4. Beston BR, Jones DG, Murphy KM. Experience-dependent changes in excitatory & inhibitory receptor subunit expression in visual cortex. Front Synaptic Neurosci 2010; 2:138.
5. Tropea D, Van Wart A, Sur M. Molecular mechanisms of experience-dependent plasticity in visual cortex. Philos Trans R Soc Lond B Biol Sci 2009; 364:341-355.
6. Hooks BM, Chen C. Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron 2007; 56:312-326.
7. Salami M, Fathollahi Y, Semnanian S, Atapour N. Differential effect of dark rearing on long-term potentiation induced by layer IV and white matter stimulation in rat visual cortex. Neurosci Res 2000; 38:349-356.
8. Montey KL, Quinlan EM. Recovery from chronic monocular deprivation following reactivation of thalamocortical plasticity by dark exposure. Nat Commun 2011; 2:317.
9. Sloviter RS, Lomo T. Updating the lamellar hypothesis of hippocampal organization. Front Neural Circuits 2012; 6:102.
10. Wang SH, Morris RG. Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 2010; 61: 9-79.
11. Tsanov M, Manahan-Vaughan D. Synaptic plasticity from visual cortex to hippocampus: systems integration in spatial information processing. Neuroscientist 2008; 14:584-597.
12. Ge S, Yang CH, Hsu KS, Ming GL, Song H . A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 2007; 54:559-566.
13. Talaei SA, Salami M. Sensory experience differentially underlies developmental alterations of LTP in CA1 area and dentate gyrus. Brain Res 2013; 1537:1-8.
14. Novkovic T, Mittmann T, Manahan-Vaughan D. BDNF contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment. Hippocampus 2015; 25:1-15.
15. Hardeland Rd, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin-A pleiotropic, orchestrating regulator molecule. Prog Neurobiol 2011; 93: 350-384.
16. Jaldo-Alba F, Munoz-Hoyos A, Molina-Carballo A, Molina-Font JA, Acuna-Castroviejo D. Light deprivation increases plasma levels of melatonin during the first 72 hr of life in human infants. Acta Endocrinol (Copenh) 1993; 129:442-445.
17. Zlotos DP, Jockers R, Cecon E, Rivara S, Witt-Enderby PA. MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J Med Chem 2014; 57:3161-3185.
18. Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJM, Zisapel N, et al. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog Neurobiol 2008; 85:335-353.
19. Savaskan E, Ayoub MA, Ravid R, Angeloni D, Fraschini F, Meier F, et al. Reduced hippocampal MT2 melatonin receptor expression in Alzheimer's disease. J Pineal Re 2005; 38:10-16.
20. Sanchez-Hidalgo M, Guerrero Montavez JM, Carrascosa-Salmoral Mdel P, Naranjo Gutierrez Mdel C, Lardone PJ, De La Lastra Romero CA. Decreased MT1 and MT2 melatonin receptor expression in extrapineal tissues of the rat during physiological aging. J Pineal Res 2009; 46:29-35.
21. Benloucif S, Masana MI, Dubocovich ML, Responsiveness to melatonin and its receptor expression in the aging circadian clock of mice. Vol. 273. 1997. R1855-R60.
22. Liu XJ, Yuan L, Yang D, Han WN, Li QS, Yang W, et al. Melatonin protects against amyloid-beta-induced impairments of hippocampal LTP and spatial learning in rats. Synapse 2013; 67:626-636.
23. Wan Q, Man HY, Liu F, Braunton J, Niznik HB, Pang SF, et al. Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors. Nat Neurosci 1999; 2:401-403.
24. Ozcan M, Yilmaz B, Carpenter DO. Effects of melatonin on synaptic transmission and long-term potentiation in two areas of mouse hippocampus. Brain Res 2006; 1111:90-94.
25. Soto-Moyano R, Burgos H, Flores F, Valladares L, Sierralta W, Fernandez V, et al. Melatonin administration impairs visuo-spatial performance and inhibits neocortical long-term potentiation in rats. Pharmacol Biochem Behav 2006; 85:408-414.
26. Talaei SA, Sheibani V, Salami M. Light deprivation improves melatonin related suppression of hippocampal plasticity. Hippocampus 2010; 20:447-455.
27. Paxinos G, Watson C, The rat brain in stereotaxic coordinates. Vol. 6th. 2007: Academic Press.
28. Azami Tameh A, Clarner T, Beyer C, Atlasi MA, Hassanzadeh G, Naderian H. Regional regulation of glutamate signaling during cuprizone-induced demyelination in the brain. Annal Anatom, 2013; 195:415-423.
29. Berry RL, Perkins ATt, Teyler TJ. Visual deprivation decreases long-term potentiation in rat visual cortical slices. Brain Res 1993; 628:99-104.
30. Kirkwood A, Rioult MG, Bear MF. Experience-dependent modification of synaptic plasticity in visual cortex. Nature 1996; 381:526-528.
31. Kerchner GA, Nicoll RA. Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev Neurosci 2008; 9:813-825.
32. Goel A, Jiang B, Xu LW, Song L, Kirkwood A, Lee HK. Cross-modal regulation of synaptic AMPA receptors in primary sensory cortices by visual experience. Nat Neurosci 2006 9:1001-1003.
33. Yashiro K, Philpot BD. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 2008; 55:1081-1094.
34. Liu X-B, Murray KD, Jones EG. Switching of NMDA Receptor 2A and 2B Subunits at Thalamic and Cortical Synapses during Early Postnatal Development. J Neurosci 2004; 24:8885-8895.
35. Koyanagi Y, Yamamoto K, Oi Y, Koshikawa N, Kobayashi M. Presynaptic Interneuron Subtype- and Age-Dependent Modulation of GABAergic Synaptic Transmission by α-Adrenoceptors in Rat Insular Cortex. J Neurophysiol 2010; 103: 2876-2888.
36. Tyzio R, Minlebaev M, Rheims S, Ivanov A, Jorquera I, Holmes GL. Postnatal changes in somatic γ-aminobutyric acid signalling in the rat hippocampus. Eur J Neurosci 2008; 27:2515-2528.
37. Quinlan EM, Olstein DH, Bear MF. Bidirectional, experience dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc Natl Acad Sci U S A 1999; 96:12876-12880.
38. Morales B, Choi SY, Kirkwood A. Dark rearing alters the development of GABAergic transmission in visual cortex. J Neurosci 2002; 22:8084-8090.
39. Tang AH, Chai Z, Wang SQ. Dark rearing alters the short-term synaptic plasticity in visual cortex. Neurosci. Lett 2007; 422:49-53.
40. Berry LM, Polk DH, Ikegami M, Jobe AH, Padbury JF, Ervin MG. Preterm newborn lamb renal and cardiovascular responses after fetal or maternal antenatal betamethasone. Am J Physiol Regul Integr Comp Physiol 1997; 272: R1972-1979.
41. Ireland DR, Abraham WC. Mechanisms of Group I mGluR-Dependent Long-term Depression of NMDA Receptor-Mediated Transmission at Schaffer Collateral-CA1 Synapses. J Neurophysiol 2008.
42. Molnár E. Long-term potentiation in cultured hippocampal neurons. Semin Cell Dev Biol 2011; 22:506-513.
43. Jin SX, Feig LA. Long-term potentiation in the CA1 hippocampus induced by NR2A subunit-containing NMDA glutamate receptors is mediated by Ras-GRF2/Erk map kinase signaling. PLoS One 2010; 5:e11732.
44. Erisir A, Harris JL. Decline of the critical period of visual plasticity is concurrent with the reduction of NR2B subunit of the synaptic NMDA receptor in layer 4. J Neurosci 2003; 23:5208-5218.
45. Musshoff U, Riewenherm D, Berger E, Fauteck JD, Speckmann EJ. Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus 2002; 12:165-173.
46. Zitouni M, Pevet P, Masson-Pevet M. Brain and pituitary melatonin receptors in male rat during post-natal and pubertal development and the effect of pinealectomy and testosterone manipulation. J Neuroendocrinol 1996; 8:571-577.
47. Gauer Fo, Schuster C, Poirel V-J, Pevet  P, Masson-Pevet M. Cloning experiments and developmental expression of both melatonin receptor Mel1A mRNA and melatonin binding sites in the Syrian hamster suprachiasmatic nuclei. Mol Brain Res 1998; 60:193-202.
48. Fujieda H, Scher J, Lukita-Atmadja W, Brown GM. Gene regulation of melatonin and dopamine receptors during eye development. Neuroscience 2003; 120:301-307.
49. Chaudhury D, Wang LM, Colwell CS. Circadian regulation of hippocampal long-term potentiation. J Biol Rhythms 2005; 20:225-236.
50. Marquez de Prado B, Castaneda TR, Galindo A, del Arco A, Segovia G, Reiter RJ, et al. Melatonin disrupts circadian rhythms of glutamate and GABA in the neostriatum of the aware rat: a microdialysis study. J Pineal Res 2000; 29:209-216.
51. Khaldy H, Leon J, Escames G, Bikjdaouene L, Garcia JJ, Acuna-Castroviejo D. Circadian rhythms of dopamine and dihydroxyphenyl acetic acid in the mouse striatum: effects of pinealectomy and of melatonin treatment. Neuroendocrinology 2002; 75:201-208.
52. Iuvone PM, Boatright JH, Tosini G, Ye K. N-acetylserotonin: circadian activation of the BDNF receptor and neuroprotection in the retina and brain. Adv Exp Med Biol 2014; 801:765-771.
53. Miller E, Morel A, Saso L, Saluk J. Melatonin Redox Activity. Its Potential Clinical Application in Neurodegenerative Disorders. Curr Top Med Chem 2014.
54. Dominguez-Alonso A, Valdes-Tovar M, Solis-Chagoyan H, Benitez-King G. Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the ca++/calmodulin complex. Int J Mol Sci 2015;
55. Ramirez-Rodriguez G, Gomez-Sanchez A, Ortiz-Lopez L. Melatonin maintains calcium-binding calretinin-positive neurons in the dentate gyrus during aging of Balb/C mice. Exp Gerontol 2014; 60:147-152.
56. Corrales A, Vidal R, Garcia S, Vidal V, Martinez P, Garcia E, et al. Chronic melatonin treatment rescues electrophysiological and neuromorphological deficits in a mouse model of Down syndrome. J Pineal Res 2014; 56:51-61.
57. Wang LM, Suthana NA, Chaudhury D, Weaver DR, Colwell CS. Melatonin inhibits hippocampal long-term potentiation. Eur J Neurosci 2005; 22:2231-2237.
58. El-Sherif Y, Tesoriero J, Hogan MV, Wieraszko A. Melatonin regulates neuronal plasticity in the hippocampus. J Neurosci Res 2003; 72:454-460.
59. Larson J, Jessen RE, Uz T, Arslan AD, Kurtuncu M, Imbesi M, et al. Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice. Neurosci Lett 2006; 393:23-26.
60. Escames G, Leon J, Lopez LC, Acuna-Castroviejo D. Mechanisms of N-methyl-D-aspartate receptor inhibition by melatonin in the rat striatum. J Neuroendocrinol 2004; 16:929-935.