Development of 153Sm-DTPA-SPION as a theranostic dual contrast agents in SPECT/MRI

Document Type : Original Article

Authors

1 Department of Nuclear Medicine, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran

2 Department of Radiation Technology, Allied Medicine Faculty, Babol University of Medical Sciences, Babol, Iran

Abstract

Objective(s): This study describes the preparation, biodistribution of 153Sm-DTPA-SPION after intravenous injection in rats.
Materials and Methods: The chelator DTPA dianhydride was conjugated to SPION using a small modification of the well-known cyclic anhydride method. Conjugation was done at a 1: 4 (SPION: ccDTPA) molar ratio. Conjugation reaction was purified with magnetic assorting column (MACs) using high gradient magnetic field following incubation, the radio labeled conjugate was checked using RTLC method for labeling and purity checked.
Results: The RTLC showed that labeling yield was above 99% after purification and the compound have good in vitro stabilities until 48 hr post injection in the presence of human serum. The biodistribution of 153Sm-DTPA-SPION in rats showed dramatic uptake in the reticuloendothelial system (RES) and their clearance is so fast in other organs especially in the blood. Biodistribution results show that after 30 min post injection more than 84% of injected activities were taken up by the liver and spleen (about 64% and 20%, respectively).
Conclusion: Due to magnificent uptakes of this radiotracer in the liver and spleen and their fast clearance from other tissues, especially in blood, it is suggested that this radiotracer would be a potential candidate for RES theranostic purposes.

Keywords


1. Shanehsazzadeh S, Lahooti A, Hajipour MJ, Ghavami M, Azhdarzadeh M. External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles. Colloid Surface B 2015; 136:1107-1112.
2. Amanlou M, Siadat SD, Ebrahimi SES, Alavi A, Aghasadeghi MR, Ardestani MS, et al. Gd3+-DTPA-DG: novel nanosized dual anticancer and molecular imaging agent. Int J Nanomed 2011;6:747-763.
3. Jahanbakhsh R, Atyabi F, Shanehsazzadeh S, Sobhani Z, Adeli M, Dinarvand R. Modified Gadonanotubes as a promising novel MRI contrasting agent. Daru 2013;21:53-62.
4. Oghabian MA, Gharehaghaji N, Masoudi A, Shanehsazzadeh S, Ahmadi R, Majidi RF, et al. Effect of coating materials on lymph nodes detection using magnetite nanoparticles. Adv Sci Eng Med 2013;5:37-45.
5. Lahooti A, Shanehsazzadeh S, Jalilian AR, Tavakoli MB. Assessment of effective absorbed dose of 111In-DTPA-Buserelin in human on the basis of biodistribution rat data. Radiat Prot Dosim 2013; 154: 1-8.
6. Hajesmaeelzadeh F, Shanehsazzadeh S, Grüttner C, Daha FJ, Oghabian MA. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI. Iran J Basic Med Sci 2016; 19: 166-171.
7. Shanehsazzadeh S, Oghabian M, Allen B, Amanlou M, Masoudi A, Daha F. Evaluating the effect of ultrasmall superparamagnetic iron oxide nanoparticles for a long-term magnetic cell labeling. J Med Phys 2013;38:34-40.
8. Shanehsazzadeh S, Gruettner C, Lahooti A, Mahmoudi M, Allen BJ, Ghavami M, et al. Monoclonal antibody conjugated magnetic nanoparticles could target MUC‐1‐positive cells in vitro but not in vivo. Contrast Media Mol Imaging 2015;10:225–236.
9. Shanehsazzadeh S, Lahooti A. Biodistribution of 80 nm iron oxide nanoparticles labeled with 99mTc in Balb/c mice. Nucl Med Biol 2014; 41:625.
10. Weissleder R, Stark D, Engelstad B, Bacon B, Compton C, White D, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 1989;152:167-173.
11. Firestone RB, Shirley VS. Table of Isotopes, 2 Volume Set, by Richard B. Firestone, Virginia S. Shirley (Editor), pp. 3168. ISBN 0-471-33056-6. Wiley-VCH, December 1998; 1998:3168.
12.  Resche I, Chatal JF, Pecking A, Ell P, Duchesne G, Rubens R, et al. A dose-controlled study of 153 Sm-ethylenediaminetetramethylenephosphonate (EDTMP) in the treatment of patients with painful bone metastase. Eur J Cancer 1997;33:1583-1591.
13. Council B. Guidelines on the use of living animals in scientific investigations: Biological Council; 1987.
14. Omid H, Oghabian MA, Ahmadi R, Shahbazi N, Hosseini HRM, Shanehsazzadeh S, et al. Synthesizing and staining manganese oxide nanoparticles for cytotoxicity and cellular uptake investigation. BBA-Gen Subj 2014;1840:428-433.
15. Shanehsazzadeh S, Jalilian AR, Sadeghi HR, Allahverdi M. Determination of human absorbed dose of 67GA-DTPA-ACTH based on distribution data in rats. Radiat Prot Dosim 2009; 134:79-86.
16. Jalilian A, Shanehsazzadeh S, Akhlaghi M, Garoosi J, Rajabifar S, Tavakoli M. Preparation and evaluation of [67Ga]-DTPA-β-1–24-corticotrophin in normal rats. Radiochim Acta 2008; 96:435-439.
17. Jalilian AR, Shanehsazzadeh S, Akhlaghi M, Garousi J, Rajabifar S, Tavakoli MB. Preparation and biodistribution of [Ga-67]-DTPA-gonadorelin in normal rats. J Radioanal Nucl Ch 2008;278:123-129.
18. Shanehsazzadeh S, Oghabian MA, Lahooti A, Allen BJ, editors. Development of ultra small super paramagnetic iron oxide nanoparticles labeled with Gallium 67 as a dual modality probe. J Label Compd Rad 2013: WILEY-BLACKWELL 111 RIVER ST, HOBOKEN 07030-5774, NJ USA.
19. Shanehsazzadeh S, Grüttner C, Yousefnia H, Lahooti A, Gholami A, Nosrati S, et al. Development of 177Lu-DTPA-SPIO conjugates for potential use as a dual contrast SPECT/MRI imaging agent. Radiochim Acta 2016; 104: 337-344.
20. Shanehsazzadeh S, Lahooti A, Sadeghi HR, Jalilian AR. Estimation of human effective absorbed dose of 67Ga–cDTPA–gonadorelin based on biodistribution rat data. Nucl Med Commun 2011;32:37-43.
21. Najafian N, Shanehsazzadeh S, Hajesmaeelzadeh F, Lahooti A, Gruettner C, Oghabian MA. Effect of Functional Group and Surface Charge of PEG and Dextran-Coated USPIO as a Contrast Agent in MRI on Relaxivity Constant. Appl Magn Reson 2015; 46: 685-692.
22. Sadeghzadeh M, Shanehsazzadeh S, Lahooti A. Assessment of the effective absorbed dose of 4-benzyl-1-(3-[125I]-iodobenzylsulfonyl) piperidine in humans on the basis of biodistribution data of rats. Nucl Med Commun 2015; 36:90-94.
23. Moghaddam AK, Jalilian AR, Hayati V, Shanehsazzadeh S. Determination of human absorbed dose of 201Tl (III)-DTPA-HIgG based on biodistribution data in rats. Radiat Prot Dosim 2010;141:269-274.
24. Zolghadri S, Jalilian AR, Naseri Z, Yousefnia H, Bahrami-Samani A, Ghannadi-Maragheh M, et al. Production, Quality Control and Biological Evaluation of 166Ho-PDTMP as a Possible Bone Palliation Agent. Iran J Basic Med Sci 2013;16:719-725.
25. Jalilian AR, Shanehsazzadeh S, Akhlaghi M, Kamali-dehghan M, Moradkhani S. Development of [111In]-DTPA-buserelin for GnRH receptor studies. Radiochim Acta 2010;98:113-119.
26. Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, et al. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloid Surface B 2016; 143: 224-232.
27. Hatamie S, Ahadian MM, Ghiass MA, Saber R, Parseh B, Oghabian MA, et al. Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis. Colloid Surface B 2016; 146:271-279.
28. Nosrati S, Shanehsazzadeh S, Yousefnia H, Gholami A, Grüttner C, Jalilian AR, et al. Biodistribution evaluation of 166Ho–DTPA–SPION in normal rats. J Radioanal Nucl Ch 2016; 307: 1559-1566.
29.  Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML. Protein corona significantly reduces active targeting yield. Chem Commun 2013; 49:2557-2559.
30. Shanehsazzadeh S, Oghabian MA, Lahooti A, Allen BJ, editors. Development of ultra small super paramagnetic iron oxide nanoparticles labeled with Gallium 67 as a dual modality probe. J Label Compd Rad; 2013: WILEY-BLACKWELL 111 RIVER ST, HOBOKEN 07030-5774, NJ USA.
31. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-Nanoparticle Interactions: Opportunities and Challenges. Chem Rev 2011;111:5610- 5637.
32. Shanehsazzadeh S, Oghabian MA, Lahooti A, Abdollahi M, Haeri SA, Amanlou M, et al. Estimated background doses of [67Ga]-DTPA-USPIO in normal
BALB/c mice as a potential therapeutic agent for liver and spleen cancers. Nucl Med Commun 2013;34:915-925.
33.  Weissleder R, Stark D, Engelstad B, Bacon B, Compton C, White D, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 1989;152:167-173.
34. Shanehsazzadeh S, Yousefnia H, Lahooti A, Zolghadri S, Jalilian AR, Afarideh H. Assessment of human effective absorbed dose of 67 Ga–ECC based on biodistribution rat data. Ann Nucl Med 2014;28:118-124.
35. Shanehsazzadeh S, Lahooti A, Shirmardi SP, Erfani M. Comparison of estimated human effective dose of 67Ga-and 99mTc-labeled bombesin based on distribution data in mice. J Radioanal Nucl Ch 2015;305:513-520.