Crocin prevents haloperidol-induced orofacial dyskinesia: possible an antioxidant mechanism

Document Type : Original Article


1 School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3 Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran


Objective(s):Long-term treatment with antipsychotics causes serious side effects such as tardive dyskinesia that characterized by abnormal movements in the orofacial region. Oxidative stress in the brain specific area is implicated in the pathophysiology of tardive dyskinesia. In this study the protective effect of crocin on haloperidol-induced orofacial dyskinesia was evaluated.
Materials and Methods:Haloperidol (1 mg/kg, IP) and crocin (10, 20 and 40 mg/kg, IP) were administrated to rats for 21 days. Behavioral assessments such as orofacial dyskinesia movements, open field test and elevated plus maze (EPM) were evaluated every week. Malondealdehyde (MDA) and glutathione (GSH) levels in the hippocampus, cortex and striatum were also measured.
Results: Haloperidol increased vacuous chewing movements (VCMs) and tongue protrusions (TPs) in rats and co-administration of crocin (20 and 40 mg/kg) significantly reduced them. Furthermore, haloperidol decreased the locomotor and exploratory activities (rearing) in the open field test and decreased the percentage of entries into open arms and the percentage of the time spent on open arms in the EPM. Pretreatment with crocin (10 mg/kg) modified haloperidol effects on these behavioral parameters. Haloperidol induced lipid peroxidation in three brain regions, whereas crocin co-administration reduced the MDA and restored the decreased GSH levels.
Conclusion: Our finding suggests that oxidative stress has an important role in the development of tardive dyskinesia. Crocin showed protective effect against haloperidol induced tardive dyskinesia and as a potent naturally antioxidant could be a new and useful drug and a possible therapeutic option for the treatment of tardive dyskinesia.


1. Kudo S, Ishizaki T. Pharmacokinetics of haloperidol. Clin pharm 1999; 37:435-456.
2. Raudenska M, Gumulec J, Babula P, Stracina T, Sztalmachova M, Polanska H, et al. Haloperidol Cytotoxicity and Its Relation to Oxidative Stress. Mini Rev Med Chem 2013; 13:1993-1998.
3. Vallianatou K. Antipsychotics. Medicine 2012; 40:676-678.
4. Mitchell I, Cooper A, Griffiths M, Cooper A. Acute administration of haloperidol induces apoptosis of neurones in the striatum and substantia nigra in the rat. Neuroscience 2002; 109:89-99.
5. Cho C-H, Lee H-J. Oxidative stress and tardive dyskinesia: Pharmacogenetic evidence. Prog Neuro-Psychopharm Biol Psychiatry 2013; 46:207-213.
6. Aia PG, Revuelta GJ, Cloud LJ, Factor SA. Tardive dyskinesia. Curr treat options neurol 2011; 13:231-241.
7. Andreassen OA, Jørgensen HA. Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats: implications for tardive dyskinesia? Prog neurobiol 2000; 61:525-541.
8. Llorca P-M, Chereau I, Bayle F-J, Lancon C. Tardive dyskinesias and antipsychotics: a review. Eur Psychiatry 2002; 17:129-138.
9. Kumar AS, Reddy TSK. A Review on tardive dyskinesia. IJPPR 2012; 3:33-41.
10. Waln O, Jankovic J. An update on tardive dyskinesia: from phenomenology to treatment. Tremor Other Hyperkinet Mov 2013; 3:161-172.
11. Gerlach J, Reisby N, Randrup A. Dopaminergic hypersensivity and cholinergic hypofunction in the pathophysiology of tardive dyskinesia. Psychopharmacology (Berl) 1974; 34:21-35.
12. Teo JT, Edwards MJ, Bhatia K. Tardive dyskinesia is caused by maladaptive synaptic plasticity: a hypothesis. Mov Disord 2012; 27:1205-1215.
13. Kobayashi RM. Orofacial dyskinesia: Clinical features, mechanisms and drug therapy. West J Med 1976; 125:277-288.
14. Lister J, Nobrega JN, Fletcher PJ, Remington G. Oxidative stress and the antipsychotic-induced vacuous chewing movement model of tardive dyskinesia: evidence for antioxidant-based prevention strategies. Psychopharmacology (Berl) 2014; 231:2237-2249.
15. Elkashef A, Wyatt R. Tardive dyskinesia: possible involvement of free radicals and treatment with vitamin E. Schizophrenia Bull 1999; 25:731-740.
16. Polydoro M, Schröder N, Lima MNM, Caldana F, Laranja DC, Bromberg E, et al. Haloperidol-and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behav 2004; 78:751-756.
17. Burger M, Fachinetto R, Zeni G, Rocha J. Ebselen attenuates haloperidol-induced orofacial dyskinesia and oxidative stress in rat brain. Pharmacol Biochem Behav 2005; 81:608-615.
18. Arniaz S, Coronel M, Boveris A. Nitric oxide, superoxide and Hydrogen peroxide production in brain mitochondria after haloperidol treatment. Biol Chem 1999; 3:235-243.
19. Gumulec J, Raudenska M, Hlavna M, Stracina T, Sztalmachova M, Tanhauserova V, et al. Determination of oxidative stress and activities of antioxidant enzymes in guinea pigs treated with haloperidol. Exp Ther Med 2013; 5:479-484.
20. Hosseinzadeh H, Shariaty VM, Sameni AK, Vahabzadeh M. Acute and sub-acute toxicity of crocin, a constituent of crocus sativus L. (saffron), in mice and rats. Pharmacologyonline 2010; 2:943-951.
21. Mollazadeh H, Emami SA, Hosseinzadeh H. Razi’s Al-Hawi and saffron (Crocus sativus): A review. Iran J Basic Med Sci 2015; 18:1153-1166.
22. Alavizadeh S, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a Comprehensive Review. Food  Chem Toxicol 2013; 11.
23. Hosseinzadeh H, Nassiri-Asl M. Avicenna's (Ibn Sina) the canon of medicine and saffron (Crocus sativus): A review. Phytother Res 2013; 27:475-483.
24. Vahdati Hassani F, Naseri V, Razavi B, Mehri S, Abnous K, Hosseinzadeh H. Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. Daru 2014; 8:22
25. Hosseinzadeh H, Karimi G, Niapoor M. Antidepressant effects of crocus sativus stigma extracts and its constituents, crocin and safranal, in mice. J Med Plants 2004; 3:48-58.
26. Ardebili Dorri S, Hosseinzadeh H, Abnous K, Vahdati Hasani F, Yazdian Robati R, Razavi BM. Involvement of brain‐derived neurotrophic factor (BDNF) on malathion induced depressive‐like behavior in subacute exposure and protective effects of crocin. Iran J Basic Med Sci 2015; 18:958-966.
27. Sheng L, Qian Z, Zheng S, Xi L. Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. Eur J Pharmacol 2006; 543:116-122.
28. Nam KN, Park Y-M, Jung H-J, Lee JY, Min BD, Park S-U, et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol 2010; 648:110-116.
29. Hosseinzadeh H, Younesi H. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2002; 2:7.
30. Festuccia C, Mancini A, Gravina G, Scarsella L, Llorens S, Alonso G, et al. Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. BioMed Res Int 2014; 2014:135048.
31. Assimopoulou A, Sinakos Z, Papageorgiou V. Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res 2005; 19:997-1000.
32. Mehri S, Abnous K, Mousavi S, Motamed Shariaty V, Hosseinzadeh H. Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol 2012; 32:227-235.
33. Nassiri-Asl M, Hosseinzadeh H. Neuropharmaco-logy effects of saffron (Crocus sativus) and Its active constituents. Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease. Prev Ther 2014: 29-39.
34. Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Hajisoltani R, Bandegi AR, Motamedi F, et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol 2011; 667:222-229.
35. Altinoz E, Oner Z, Elbe H, Cigremis Y, Turkoz Y. Protective effects of saffron (its active constituent, crocin) on nephropathy in streptozotocin-induced diabetic rats. Hum Exp Toxicol 2015; 34:127-134.
36. Hosseinzadeh H, Shamsaie F, Mehri S. Antioxidant activity of aqueous and ethanolic extracts of Crocus sativus L. stigma and its bioactive constituents crocin and safranal. Pharmacogn Mag 2010; 5:419-424.
37. Ochiai T, Ohno S, Soeda S, Tanaka H, Shoyama Y, Shimeno H. Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of alpha-tocopherol. Neurosci Lett 2004; 362:61-64.
38. Ochiai T, Shimeno H, Mishima K-i, Iwasaki K, Fujiwara M, Tanaka H, et al. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta (BBA)-General subjects 2007; 1770:578-584.
39. Magdalini A, Charalambos D, Moschos G, Spyros E, Paul C, Marigoula M, et al. Inhibitory activity on amyloid-â aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem 2006; 54:8762-8768.
40. Naghizadeh B, Mansouri S, Mashhadian N. Crocin attenuates cisplatin-induced renal oxidative stress in rats. Food Chem Toxicol 2010; 48:2650-2655.
41. Razavi BM, Hosseinzadeh H. Saffron as an antidote or a protective agent against natural or chemical toxicities. DARU J Pharm Sci  2015; 23:31.
42. Rashedinia M, Lari P, Abnous K, Hosseinzadeh H . Protective effect of crocin on acrolein-induced tau phosphorylation in the rat brain. Acta Neurobiol Exp 2015; 75:208-219.
43. Peroza LR, Busanello A, Leal CQ, Röpke J, Boligon AA, Meinerz D, et al. Bauhinia forficata prevents vacuous chewing movements induced by haloperidol in rats and has antioxidant potential in vitro. Neurochem Res 2013; 38:789-796.
44. Bishnoi M, Chopra K, Kulkarni SK. Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain. Pharmacol Biochem Behav 2008; 88:511-522.
45. Hadizadeh F, Mohajeri S, Seifi M. Extraction and purification of crocin from saffron stigmas employing a simple and efficient crystallization method. Pak J Biol Sci 2010; 13:691-698.
46. Naidu PS, Singh A, Kulkarni SK. Quercetin, a bioflavonoid, attenuates haloperidol-induced orofacial dyskinesia. Neuropharmacol 2003; 44:1100-1106.
47. Naidu PS, Singh A, Kulkarni SK. Effect of Withania somnifera root extract on haloperidol-induced orofacial dyskinesia: possible mechanisms of action. J Med food 2003; 6:107-114.
48. Naidu PS, Singh A, Kulkarni SK. Carvedilol attenuates neuroleptic‐induced orofacial dyskinesia: possible antioxidant mechanisms. British J Pharmacol 2002; 136:193-200.
49. Pardon M, Perez Diaz F, Joubert C, Cohen Salmon C. Age dependent effects of a chronic ultramild stress procedure on open field behavior in B6D2F1 female mice. Physiol Behav 2000; 70:7-13.
50. Fachinetto R, Villarinho J, Wagner C, Pereira R, Avila D, Burger M, et al. Valeriana officinalis does not alter the orofacial dyskinesia induced by haloperidol in rats: Role of dopamine transporter. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1478-1486.
51. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95:351-358.
52. Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 1978; 86:271-278.
53. Moron M, Depierre J, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S transferase activities in rat lung and liver. Biochim Biophys Acta 1979; 582:67-78.
54. Abuja PM, Albertini R. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin Chim Acta 2001; 306:1-17.
55. Jimenez del rio M, Velez-Pardo C. Paraquat induces apoptosis inhumanlymphocytes: Protective and rescue effects of glucose, cannabinoids and insulin-like growth factor-1. Growth Factors 2008; 26:49-60.
56. Thaakur S, Himabindhu G. Effect of alpha lipoic acid on the tardive dyskinesia and oxidative stress induced by haloperidol in rats. J neural transm 2009; 116:807-814.
57. Naidu PS, Singh A, Kaur P, Sandhir R, Kulkarni SK. Possible mechanism of action in melatonin attenuation of haloperidol-induced orofacial dyskinesia. Pharmacol Biochem Behav 2003; 74:641-648.
58. Bishnoi M, Chopra K, Kulkarni SK. Protective effect of rutin, a polyphenolic flavonoid against haloperidol‐induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes. Fund  Clin Pharmacol 2007; 21:521-529.
59. Kawabata K, Tung NH, Shoyama Y, Sugie S, Mori T, Tanaka T. Dietary crocin inhibits colitis and colitis-associated colorectal carcinogenesis in male ICR mice. Evid Based Complement Altern Med 2012; 2012.
60. Cadet J, Lohr J, Jeste D. Free radicals and tardive dyskinesia. Trends Neurosci 1986; 9:107-108.
61. Ramos ZR, Fortunato JJ, Agostinho FR, Martins MR, Correa M, Schetinger MR, et al. Influence of malathion on acetylcholinesterase activity in rats submitted to a forced swimming test. Neurotox Res 2006; 9:285-290.
62. Lohr JB, Kuczenski R, Niculescu AB. Oxidative mechanisms and tardive dyskinesia. CNS Drugs 2003; 17:47-62.
63. Halliwell B, Gutteridge JM. Oxygen radicals and the nervous system. Trends Neurosci 1985; 8:22-26.
64. Galili-Mosberg R, Gil-Ad I, Weizman A, Malamed E, Offen D. Haloperidol-induced neurotoxicity- possible implication for tardive dyskinesia. J Neural Transm 2000; 107:479-490.
65. Busanello A, Barbosa NBV, Peroza LR, Farias LE, Burger ME, Barreto KP, et al. Resveratrol protects against a model of vacuous chewing movements induced by reserpine in mice. Behav Pharmacol 2011; 22:71-75.
66. De Monte C, Carradori S, Chimenti P, Secci D, Mannina L, Alcaro F, et al. New insights into the biological properties of Crocus sativus L.: chemical modifications, human monoamine oxidases inhibition and molecular modeling studies. Eur J Med Chem 2014; 82:164-171.
67. Miyazaki I, Asanuma M. Approaches to prevent dopamine quinone-induced neurotoxicity. Neurochem Res 2009; 34:698-706.
68. Naidu PS, Kulkarni SK. Possible involvement of prostaglandins in haloperidol-induced orofacial dyskinesia in rats. Eur J Pharmacol 2001; 430:295-298.
69. Xu G-L, Li G, Ma H-P, Zhong H, Liu F, Ao G-Z. Preventive effect of crocin in inflamed animals and in LPS-challenged RAW 264.7 cells. J Agr Food Chem 2009; 57:8325-8330.
70. Naidu P, Kulkarni S. Excitatory mechanisms in neuroleptic‐induced vacuous chewing movements (VCMs): possible involvement of calcium and nitric oxide. Behav Pharmacol 2001; 12:209-216.
71. Zheng YQ, Liu JX, Wang JN, Xu L. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res 2007; 1138:86-94.
72. Kim JH, Park GY, Bang SY, Park SY, Bae SK, Kim Y. Crocin suppresses LPS-stimulated expression of inducible nitric oxide synthase by upregulation of heme oxygenase-1 via calcium/calmodulin-dependent protein kinase 4. Mediators Inflamm 2014; 2014:728709.
73. Burger ME, Fachineto R, Alves A, Callegari L, Rocha JBT. Acute reserpine and subchronic haloperidol treatments change synaptosomal brain glutamate uptake and elicit orofacial dyskinesia in rats. Brain Res 2005; 1031:202-210.
74. Lu MC, Tzang BS, Kuo WW, Wu FL, Chen YS, Tsai CH, et al. More activated cardiac mitochondrial-dependent apoptotic pathway in obese zucker rats. Obesity 2007; 15:2634-2642.
75. Atlante A, Calissano P, Bobba A, Giannattasio S, Marra E, Passarella S. Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS lett 2001; 497:1-5.
76. Hosseinzadeh H, Sadeghnia HR, Rahimi A. Effects of safranal on extracellular hippocampal levels of glutamate and aspartate during kainic acid treatment in anesthetized rats. Planta Med 2008; 74:1441-1445.
77. Vanamala J, Kester AC, Heuberger AL, Reddivari L. Mitigation of Obesity-Promoted Diseases by Nigella sativa and Thymoquinone . Plant Foods Human Nut  67:111-119.
78. Halataei BAS, Khosravi M, Arbabian S, Sahraei H, Golmanesh L, Zardooz H, et al. Saffron (Crocus sativus) aqueous extract and its constituent crocin reduces stress-induced anorexia in mice. Phytother Res 2011; 25:1833-1838.
79. Imenshahidi M, Zafari H, Hosseinzadeh H. Effects of crocin on the acquisition and reinstatement of morphine-induced conditioned place preference in mice. Pharmacologyonline 2011; 1:1007-1013.
80. Gunne LM, Häggström J-E. Reduction of nigral glutamic acid decarboxylase in rats with neuroleptic-induced oral dyskinesia. Psychopharmacology 1983; 81:191-194.
81. Peixoto MF, Abı́lio VC, Silva RH, Frussa-Filho R. Effects of valproic acid on an animal model of tardive dyskinesia. Behav Brain Res 2003; 142:229-233.
82. Kaneda H, Shirakawa O, Dale J, Goodman L, Bachus SE, Tamminga CA. Co-administration of progabide inhibits haloperidol-induced oral dyskinesias in rats. Eur J Pharmacol 1992; 212:43-49.
83. Purushothuman S, Nandasena C, Peoples CL, El Massri N, Johnstone DM, Mitrofanis J, et al. Saffron pre-treatment offers neuroprotection to nigral and retinal dopaminergic cells of MPTP-treated mice. J Park dis 2013; 3:77-83.
84. Soeda S, Ochiai T, Paopong L, Tanaka H, Shoyama Y, Shimeno H. Crocin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells. Life Sci 2001; 69:2887-2898.
85. Soares-weiser K, Maayan N, McGrath J. Vitamin E for neuroleptic-induced tardive dyskinesia. Cochrane Database of Syst Rev 2011; 2.
86. Abilio VC, Araujo CC, Bergamo M, Calvente PR, D'Almeida V, Ribeiro RdA, et al. Vitamin E attenuates reserpine-induced oral dyskinesia and striatal oxidized glutathione/reduced glutathione ratio (GSSG/GSH) enhancement in rats. Prog Neuro-Psychopharm Biol Psychiatry 2003; 27:109-114.
87. Karl T, Duffy L, O’Brien E, Matsumoto I, Dedova I. Behavioural effects of chronic haloperidol and risperidone treatment in rats. Behav Brain Res 2006;171:286-94.
88. Kelley AE, Bakshi VP, Dells JM, Lang CG. Cholinergic stimulation of the ventrolateral striatum elicits mouth movements in rats: pharmacological and regional specificity. Psychopharmacology 1989; 99:542-549.
89. Salamone JD, Ishiwari K, Betz AJ, Farrar AM, Mingote SM. Dopamine/adenosine interactions related to locomotion and tremor in animal models: possible relevance to parkinsonism. Parkinsonism Relat Disord 2008; 2:130-134.
90. Hosseinzadeh H, Noraei NB. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Res 2009; 23:768-774.
91. Pitsikas N, Boultadakis A, Georgiadou G, Tarantilis P, Sakellaridis N. Effects of the active constituents of Crocus sativus L., crocins, in an animal model of anxiety. Phytomedicine 2008; 15:1135-1139.