Involvement of microRNA-133 and -29 in cardiac disturbances in diabetic ovariectomized rats

Document Type : Original Article


1 Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran

2 Department of Histology & Embryology, Tabriz University of Medical Sciences, Tabriz, Iran

3 Department of Physiology, Tabriz Branch, Islamic Azad University, Tabriz, Iran

4 Tabriz University of Medical Sciences, Tabriz, Iran

5 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran


Objective(s): Menopause and diabetes obviously increase the risk of cardiovascular disease in women. The aims of the present study were to evaluate the effects of ovariectomy in type 2 diabetes on the histology and expression of miRNA-29, miRNA-133, IGF-1 and Bcl-2 genes and Bcl-2 protein and caspase 3 activity in the hearts of female rats.
Materials and Methods: Forty Female Wistar rats were divided into four groups: control, sham, ovariectomized (OVX), and ovariectomized with type 2 diabetes (OVX.D). After the 8-week experiment, the histological evaluation of the heart tissue was performed using H&E staining and PAS analysis, and cardiac expression of miRNA-29, miRNA-133, IGF-1, and Bcl-2 were evaluated using real-time PCR, and Bcl-2 protein and caspase 3 activity were evaluated using Western blot and ELISA.
Results: Ovariectomy significantly decreased miRNA-29, miRNA-133, IGF-1, and BCL-2 expression and Bcl-2 protein and increased caspase 3 activity in the heart compared to sham animals group (P<0.05). Type 2 diabetes in ovariectomized rats markedly decreased expression of miRNA-29, miRNA-133, IGF-1, BCL-2 genes, and Bcl-2 protein, and increased caspase 3 activity and reduced collagen and fibroblast tissue and glycogen granule deposition in relation to OVX group (P<0.05).
Conclusion: Our findings suggest that type 2 diabetes and menopause synergically could enhance the cardiac fibrosis through dysregulation of miRNA-29, miRNA-133, IGF-1, and Bcl-2 genes expression and Bcl-2 protein and upregulation of caspase 3 activity.


1. Eckel RH, Kahn R, Robertson RM, Rizza RA. Preventing cardiovascular disease and diabetes A call to action from the American Diabetes Association and the American Heart Association. Circulation 2006; 113:2943-2946.
2. Aneja A, Tang WW, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options.  Am J Med 2008; 121:748-757.
3. Bhupathy P, Haines CD, Leinwand LA. Influence of sex hormones and phytoestrogens on heart disease in men and women. Women's Health 2010; 6:77-95.
4. Yang X-P, Reckelhoff JF. Estrogen, hormonal replacement therapy and cardiovascular disease. Curr Opin Nephrol Hypertens 2011; 20:133.
5. Fazal L, Azibani F, Vodovar N, Cohen Solal A, Delcayre C, Samuel JL. Effects of biological sex on the pathophysiology of the heart. Br J Pharmacol 2014; 171:555-566.
6. Gama-Carvalho M, Andrade J, Brás-Rosário L. Regulation of cardiac cell fate by microRNAs: implications for heart regeneration. Cells 2014; 3:996-1026.
7. Ceman S, Saugstad J. MicroRNAs: Meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease. Pharmacol Ther 2011; 130:26-37.
8. Guleria P, Goswami D, Yadav KS. Computational identification of miRNAs and their targets from Crocus sativus L. Arch Biol Sci 2012; 64:65-70.
9. Abhari A, Zarghami N, Shahnazi V, Barzegar A, Farzadi L, Karami H, et al. Significance of microRNA targeted estrogen receptor in male fertility. Iran J Basic Med Sci 2014; 17:81.
10. Da Costa Martins PA, De Windt LJ. MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res 2012; 93:563-572.
11. Roncarati R, Anselmi CV, Losi MA, Papa L, Cavarretta E, Martins PDC, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll  Cardiol 2014; 63:920-927.
12. Skommer J, Rana I, Marques F, Zhu W, Du Z, Charchar F. Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death  Dis 2014; 5:e1325.
13. Li A-y, Yang Q, Yang K. miR-133a mediates the hypoxia-induced apoptosis by inhibiting TAGLN2 expression in cardiac myocytes. Mol Cell Biochem 2015; 400:173-181.
14. Chavali V, Tyagi SC, Mishra PK. MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem Biophys Res Commun 2012; 425:668-672.
15. Melo SF, Fernandes T, Baraúna V, Matos KC, Santos AA, Tucci PJ, et al. Expression of microRNA-29 and collagen in cardiac muscle after swimming training in myocardial-infarcted rats. Cell Physiol Biochem 2014; 33:657-669.
16. Oberbauer A. The regulation of IGF-1 gene transcription and splicing during development and aging. Front Endocrinol 2013; 4.
17. Touvron M, Escoubet B, Mericskay M, Angelini A, Lamotte L, Santini MP, et al. Locally expressed IGF1 propeptide improves mouse heart function in induced dilated cardiomyopathy by blocking myocardial fibrosis and SRF-dependent CTGF induction. Dis Model Mech 2012; 5:481-491.
18. Musarò A, McCullagh KJ, Naya FJ, Olson EN, Rosenthal N. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 1999; 400:581-585.
19. Irigoyen M-C, Paulini J, Flores LJ, Flues K, Bertagnolli M, Moreira ED, et al. Exercise training improves baroreflex sensitivity associated with oxidative stress reduction in ovariectomized rats. Hypertension 2005; 46:998-1003.
20. Cai DJ, Zhao Y, Glasier J, Cullen D, Barnes S, Turner CH, et al. Comparative effect of soy protein, soy isoflavones, and 17β‐estradiol on bone metabolism in adult ovariectomized rats. J Bone  Miner Res 2005; 20:828-839.
21. Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res 2007; 125:451.
22. Soni H, Patel S, Patel G, Paranjape A. Evaluation of anti-diabetic activity of Glucova Active Tablet on Type I and Type II diabetic model in rats. J Ayurveda  Integr Med 2014; 5:97.
23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J biol Chem 1951; 193:265-275.
24. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87:4-14.
25. Maric C. Risk factors for cardiovascular disease in women with diabetes. Gender Med 2010; 7:551.
26. Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular disease risk profiles. Am Heart J 1991; 121:293-298.
27. Liou CM, Yang AL, Kuo CH, Tin H, Huang CY, Lee SD. Effects of 17beta‐estradiol on cardiac apoptosis in ovariectomized rats. Cell Biochem Funct 2010; 28:521-528.
28. Hata A. Functions of microRNAs in cardiovascular biology and disease. Ann Rev Physiol 2013; 75:69-93.
29. Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. Nucleic Acids Res 2011; 39:6845-6853.
30. Boštjančič E, Zidar N, Štajer D, Glavač D. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 2010; 115:163-169.
31. Dong Dl, Yang Bf. Role of microRNAs in cardiac hypertrophy, myocardial fibrosis and heart failure. Acta Pharm Sin B 2011; 1:1-7.
32. Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005; 33:1290-1297.
33. Jiang X, Tsitsiou E, Herrick SE, Lindsay MA. MicroRNAs and the regulation of fibrosis. FEBS J 2010; 277:2015-2021.
34. Chang T-C, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 2007; 8:215-239.
35. Hsu CC, Ou HC, Lee SD. Effects of exercise training on cardiac mitochondrial apoptosis in ovariectomized rats. FASEB J 2010; 24:601.5.
36. Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 1996; 94:1506-1512.
37. Hu Y, Deng H, Xu S, Zhang J. MicroRNAs regulate mitochondrial function in cerebral ischemia-reperfusion injury. Int J Mol Sci 2015; 16:24895-24917.
38. Han C, Chen X, Zhuang R, Xu M, Liu S, Li Q. miR-29a promotes myocardial cell apoptosis induced by high glucose through down-regulating IGF-1. Int J Clin Exp Med 2015; 8:14352.
39. Marsh SA, Davidoff AJ. Heart smart insulin-like growth factor 1. Hypertension 2012; 59:550-551.
40. Ban CR, Twigg SM. Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vasc Health  Risk Manag 2008; 4:575.
41. Wu CH, Liu JY, Wu JP, Hsieh YH, Liu CJ, Hwang JM, et al. 17β-Estradiol reduces cardiac hypertrophy mediated through the up-regulation of PI3K/Akt and the suppression of calcineurin/NF-AT3 signaling pathways in rats. Life Sci 2005; 78:347-356.
42. Katholi RE, Couri DM. Left ventricular hypertrophy: major risk factor in patients with hypertension: update and practical clinical applications. Int J Hypertens 2011; 2011:495349.
43. Wang Y, Zhang Y, Liang H. [Role of microRNAs in diabetes and diabetes-associated complications]. Sheng li ke xue jin zhan [Progress in physiology]. 2010; 41:133-136.
44. Queirós AMGCC. Sex-and oestrogen-dependent regulation of miRNAs in cardiac hypertrophy: Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät; 2015.