1.Yi J, Yun J, Li ZK, Xu CT, Pan BR. Epidemiology and molecular genetics of congenital cataracts. Int J Ophthalmol, 2011; 4:422-432.
2.Mohebi M, Akbari A, Babaei N, Sadeghi A, Heidari M. Identification of a De Novo 3bp Deletion in CRYBA1/A3 Gene in Autosomal Dominant Congenital Cataract. Acta Med Iran 2016;54(12):778-783.
3.Rong X, Ji Y, Fang Y, Jiang Y, Lu Y. Long-Term Visual Outcomes of Secondary Intraocular Lens Implantation in Children with Congenital Cataracts. PLoS One 2015; 10:e0134864.
4.Sukhija J, Kaur S, Ram J. Outcome of a new acrylic intraocular lens implantation in pediatric cataract. J Pediatr Ophthalmol Strabismus 2015; 52:371-376.
5.Umar MM, Abubakar A, Achi I, Alhassan MB, Hassan A. Pediatric cataract surgery in National Eye Centre Kaduna, Nigeria: outcome and challenges. Middle East Afr J Ophthalmol 2015; 22:92-96.
6.Wang M, Xiao W. Congenital cataract: progress in surgical treatment and postoperative recovery of visual function. Eye Sci 2015; 30:38-47.
7.Hejtmancik JF, Smaoui N. Molecular genetics of cataract. Dev Ophthalmol 2003; 37:67-82.
8.Huang B, He W. Molecular characteristics of inherited congenital cataracts. Eur J Med Genet 2010; 53:347-57.
9.Deng H, Yuan L. Molecular genetics of congenital nuclear cataract. Eur J Med Genet 2014; 57:113-122.
10.Garnai SJ, Huyghe JR, Reed DM, Scott KM, Liebmann JM, Boehnke M, et al. Congenital cataracts: de novo gene conversion event in CRYBB2. Mol Vis 2014; 20:1579-1593.
11.He W, Li S. Congenital cataracts: gene mapping. Hum Genet 2000; 106:1-13.
12.Reddy MA, Francis PJ, Berry V, Bhattacharya SS, Moore AT. Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol 2004; 49:300-315.
13.Mobini G, Ghahremani M, Amanpour S, Dehpour A, Akbari A, Hoseiniharouni S, et al. Transforming growth factor beta-induced factor 2-linked X (TGIF2LX) regulates two morphogenesis genes, Nir1 and Nir2 in human colorectal. Acta Med Iran 2016; 54:302-307.
14.Akbari A, Ghahremani MH, Mobini GR, Abastabar M, Akhtari J, Bolhassani M, et al. Down-regulation of miR-135b in colon adenocarcinoma induced by a TGF-β receptor I kinase inhibitor (SD-208). Iran J Basic Med Sci 2015; 18:856-861.
15.Yazdi MK, Akbari A, Soltan Dallal MM. Multiplex polymerase chain reaction (PCR) assay for simultaneous detection of shiga-like toxin (stx1 and stx2), intimin (eae) and invasive plasmid antigen H (ipaH) genes in diarrheagenic Escherichia coli. Afr J Biotechnol 2011; 109:1522-1526.
16.Akbari A, Mobini GR, Maghsoudi R, Akhtari J, Faghihloo E, Farahnejad Z. Modulation of transforming growth factor-β signaling transducers in colon adenocarcinoma cells induced by staphylococcal enterotoxin B. Mol Med Rep 2016; 13:909-991.
17.Akbari A, Farahnejad Z, Akhtari J, Abastabar M, Mobini GR, Mehbod AS. Staphylococcus aureus Enterotoxin B Down-Regulates the Expression of Transforming Growth Factor-Beta (TGF-β) Signaling Transducers in Human Glioblastoma. Jundishapur J Microbiol 2016; 9:e27297.
18.Akbari A, Amanpour S, Muhammadnejad S, Ghahremani MH, Gaffari SH, Dehpour AR, et al. Evaluation of antitumor activity of a TGF-beta receptor I inhibitor (SD-208) on human colon adenocarcinoma. Daru J Pharm Sci. 2014;22:47–54.
19.Beyer EC, Berthoud VM. Connexin hemichannels in the lens. Front Physiol 2014; 5:20.
20.Chen C, Sun Q, Gu M, Liu K, Sun Y, Xu X. A novel Cx50 (GJA8) p.H277Y mutation associated with autosomal dominant congenital cataract identified with targeted next-generation sequencing. Graefes Arch Clin Exp Ophthalmol 2015; 253:915-924.
21.Jiang JX. Gap junctions or hemichannel-dependent and independent roles of connexins in cataractogenesis
and lens development. Curr Mol Med 2010; 10:851-863.
22.Li J, Wang Q, Fu Q, Zhu Y, Zhai Y, Yu Y, Zhang K, Yao K. A novel connexin 50 gene (gap junction protein, alpha 8) mutation associated with congenital nuclear and zonular pulverulent cataract. Mol Vis 2013; 19:767-774.
23.Minogue PJ, Tong JJ, Arora A, Russell-Eggitt I, Hunt DM, Moore AT, et al. A mutant connexin50 with enhanced hemichannel function leads to cell death. Invest Ophthalmol Vis Sci 2009; 50:5837-5845.
24.Pfenniger A, Wohlwend A, Kwak BR. Mutations in connexin genes and disease. Eur J Clin Invest 2011; 41:103-116.
25.Rubinos C, Villone K, Mhaske PV, White TW, Srinivas M. Functional effects of Cx50 mutations associated with congenital cataracts. Am J Physiol Cell Physiol 2014; 306:C212-220.
26.Zhu Y, Yu H, Wang W, Gong X, Yao K. Correction: A Novel GJA8 Mutation (p.V44A) Causing Autosomal Dominant Congenital Cataract. PLoS One 2015; 10:e0125949.
27.Zhu Y, Yu H, Wang W, Gong X, Yao K. A novel GJA8 mutation (p.V44A) causing autosomal dominant congenital cataract. PLoS One 2014; 9:e115406.
28.Wang L, Luo Y, Wen W, Zhang S, Lu Y. Another evidence for a D47N mutation in GJA8 associated with autosomal dominant congenital cataract. Mol Vis 2011; 17:2380-2385.
29.Mackay DS, Bennett TM, Culican SM, Shiels A. Exome sequencing identifies novel and recurrent mutations in GJA8 and CRYGD associated with
inherited cataract. Hum Genomics 2014; 8:19.
30.Ren Q, Riquelme MA, Xu J, Yan X, Nicholson BJ, Gu S, et al. Cataract-causing mutation of human connexin 46 impairs gap junction, but increases hemichannel function and cell death. PLoS One 2013; 8:e74732.
31.Sarkar D, Ray K, Sengupta M. Structure-function correlation analysis of connexin50 missense mutations causing congenital cataract: electrostatic potential alteration could determine intracellular trafficking fate of mutants. Biomed Res Int 2014; 2014:673895.