Effects of buprenorphine in the adrenal, thyroid, and cytokine intra-operative responses in a rat model (Rattus norvegicus): a preliminary study

Document Type : Original Article


1 Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA) Faculdade de Medicina Veterinária, University of Lisbon (ULisboa), Lisboa, Portugal

2 Centre Hospitalier Vétérinaire Fregis, Arcueil, France

3 SIAMU, VetAgro Sup, Marcy l’Étoile, France – Université de Lyon, VetAgro Sup, EA APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, Marcy L’Etoile, France

4 Animal Medical Center of Seattle Shoreline, Washington, USA

5 UNIDEMI, Departamento de Engenharia Mecânica e Industrial, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal


Objective(s): Buprenorphine is a common analgesic in experimental research, due to effectiveness and having few side-effects, including a limited influence in the immune and endocrine systems. However, how buprenorphine affects cytokine levels and the adrenal and thyroid response during general anesthesia and surgery is incompletely understood. This study aimed to assess whether buprenorphine modulated significantly those responses in rats submitted to general anesthesia, mechanical ventilation, and surgical insertion of intravascular catheters.
Materials and Methods: Animals were anesthetized with isoflurane, mechanically ventilated, and surgically instrumented for carotid artery and the femoral vein catheter placement. The test group (n=16), received buprenorphine subcutaneously before surgery, whereas the control group (n=16) received normal saline. Blood sampling to determine plasma levels of adrenocorticotropic hormone (ACTH), corticosterone (CS), total thyroxine (TT4), total triiodothyronine (TT3), thyroid-stimulating hormone (TSH), TNF-α, IL6, IL10, TNF-α, IL6, and IL10 mRNA was performed at 10 min after completion of all surgical procedures and at 90, 150, 240, and 300 min thereafter, with the animals still anesthetized and with mechanical ventilation.
Results: Buprenorphine-treated animals had higher levels of ACTH, CS, and TT4 at several time points (P<0.05) and TSH and TT3 at all-time points (P<0.05). They also had increased IL10, TNF-α, and IL10 mRNA levels.
Conclusion: In this model, buprenorphine significantly modulated the intra-operative cytokine and endocrine response to anesthesia, mechanical ventilation, and surgical placement of intravascular catheters. The mechanism and significance of these findings remain undetermined. Researchers should be aware of these effects when considering the use of buprenorphine for analgesic purposes.


1.Weissman C, Hollinger I. Modifying systemic responses with anesthetic techniques. Anesth Clin NA 1988; 6:221-237.
2.Desborough JP. The stress response to trauma and surgery. Br J Anaesth 2000; 85:109-117.
3.Winterhalter M, Brandl K, Rahe-Meyer N, Osthaus A, Hecker H, Hagl C, et al. Endocrine stress response and inflammatory activation during CABG surgery. A randomized trial comparing remifentanil infusion to intermittent fentanyl. Eur J Anaesthesiol 2008; 25:326-335.
4.Alsina E, Matute E, Ruiz-Huerta AD, Gilsanz F. The effects of sevoflurane or remifentanil on the stress response to surgical stimulus. Curr Pharm Des 2014; 20:5449-5468.
5.Glaser R, Rice J, Sheridan J, Fertel R, Stout J, Speicher C, et al. Stress-related immune suppression: health implications. Brain Behav Immun 1987; 1:7-20.
6.Iwasaki M, Edmondson M, Sakamoto A, Ma D. Anesthesia, surgical stress and “long term” outcomes. Acta Anaesthesiol Taiwan 2015; 53:99-104.
7.Kehlet H. Multimodal approach to control postoperative pathophysiology and rehabilitation. Br J Anaesth 1997; 78:606-617.
8.Goldkuhl R, Carlsson HE, Hau J, Abelson KS. Effect of subcutaneous injection and oral voluntary ingestion of buprenorphine on post-operative serum corticosterone levels in male rats. Eur Surg Res 2008; 41:272-278.
9.Goldkuhl R, Klockars A, Carlsson HE, Hau J, Abelson KS. Impact of surgical severity and analgesic treatment on plasma corticosterone in rats during surgery. Eur Surg Res 2010; 44:117-123.
10.Sacerdote P. Opioids and the immune system. Palliat Med 2006; 20:9-15.
11.Molina PE. Opioids and opiates: analgesia with cardiovascular, haemodynamic and immune implications in critical illness. J Intern Med 2006; 259:138-154.
12.Hilburger ME, Adler MW, Truant AL, Meissler JJ Jr, Satishchandran V, Rogers TJ, et al. Morphine induces sepsis in mice. J Infect Dis 1997; 176:183-188.
13.Corsia G, Chatti C, Coriat P, Chartier-Kastler E, Bitker MO, Rouprêt M. Perioperative analgesia in urology and potential influence of anesthesia on oncologic outcomes of surgery. Prog Urol 2012; 22:503-509.
14.Kaye AD, Patel N, Bueno FR, Hymel B, Vadivelu N, Kodumudi G, et al. Effect of opiates, anesthetic techniques, and other perioperative factors on surgical cancer patients. Ochsner J 2014; 14:216-222.
15.Hubbell JA, Muir WW. Evaluation of a survey of the diplomates of the American College of Laboratory Animal Medicine on use of analgesic agents in animals used in biomedical research. J Am Vet Med Assoc 1996; 209:918-921.
16.Lewis JW, Husbands SM. The orvinols and related opioids--high affinity ligands with diverse efficacy profiles. Curr Pharm Des 2004; 10:717-732.
17.Lutfy K, Cowan A. Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharmacol 2004; 2:395-402.
18.Guarnieri M, Brayton C, DeTolla L, Forbes-McBean N, Sarabia-Estrada R, Zadnik P. Safety and efficacy of buprenorphine for analgesia in laboratory mice and rats. Lab Anim (NY) 2012; 41:337-343.
19.Chum HH, Jampachairsri K, McKeon GP, Yeomans DC, Pacharinsak C, Felt SA. Antinociceptive effects of sustained-release buprenorphine in a model of incisional pain in rats (R. norvegicus). J Am Assoc Lab Anim Sci 2014; 53:193-197.
20.Gomez-Flores R, Weber RJ. Differential effects of buprenorphine and morphine on immune and neuroendocrine functions following acute administration in the rat mesencephalon periaqueductal gray. Immunopharmacology 2000; 48:145-156.
21.Pergolizzi J, Aloisi AM, Dahan A, Filitz J, Langford R, Likar R, et al. Current knowledge of buprenorphine and its unique pharmacological profile. Pain Pract 2010; 10:428-450.
22.Pechnick RN, George R, Poland RE. The effects of the acute administration of buprenorphine hydrochloride on the release of anterior pituitary hormones in the rat: evidence for the involvement of multiple opiate receptors. Life Sci 1985; 37:1861-1868.
23.D'Elia M, Patenaude J, Hamelin C, Garrel DR, Bernier J. No detrimental effect from chronic exposure to buprenorphine on corticosteroid-binding globulin and corticosensitive immune parameters. Clin Immunol 2003; 109:179-187.
24.Martucci C, Panerai AE, Sacerdote P. Chronic fentanyl or buprenorphine infusion in the mouse: similar analgesic profile but different effects on immune responses. Pain 2004; 110:385-392.
25. Piersma FE, Daemen MA, Bogaard AE, Buurman WA. Interference of pain control employing opioids in in vivo immunological experiments. Lab Anim 1999; 33:328-333.
26.Carrigan KA, Saurer TB, Ijames SG, Lysle DT. Buprenorphine produces naltrexone reversible alterations of immune status. Int Immunopharmacol 2004; 4:419-428.
27.Sacerdote P. Opioid-induced immunosuppre-ssion. Curr Opin Support Palliat Care 2008; 2:14-18.
28. Franchi S, Panerai AE, Sacerdote P. Buprenorphine ameliorates the effect of surgery on hypothalamus-pituitary-adrenal axis, NK cell activity and metastatic colonization in rats in comparison with morphine or fentanyl treatment. Brain Behav Immun 2007; 21:767-774.
29. Al-Mousawi AM, Kulp GA, Branski LK, Kraft R, Mecott GA, Williams FN, et al. Impact of anesthesia, analgesia, and euthanasia technique on the inflammatory cytokine profile in a rodent model of severe burn injury. Shock 2010; 34:261-268.
30.Cotroneo TM, Hugunin KM, Shuster KA, Hwang HJ, Kakaraparthi BN, Nemzek-Hamlin JA. Effects of buprenorphine on a cecal ligation and puncture model in C57BL/6 mice. J Am Assoc Lab Anim Sci 2012; 51:357-365.
31. Hugunin KM, Fry C, Shuster K, Nemzek JA. Effects of tramadol and buprenorphine on select immunologic factors in a cecal ligation and puncture model. Shock 2010; 34:250-260.
32. Hish GA Jr, Diaz JA, Hawley AE, Myers DD Jr, Lester PA. Effects of analgesic use on inflammation and hematology in a murine model of venous thrombosis. J Am Assoc Lab Anim Sci 2014; 53:485-493.
33. Hasegawa A, Iwasaka H, Hagiwara S, Hasegawa R, Kudo K, Kusaka J, et al. Remifentanil and glucose suppress inflammation in a rat model of surgical stress. Surg Today 2011; 41:1617-1621.
34. Kehlet H. Manipulation of the metabolic response in clinical practice. World J Surg 2000; 24:690-695.
35.Curtin LI, Grakowsky JA, Suarez M, Thompson AC, DiPirro JM, Martin LB, et al. Evaluation of Buprenorphine in a Postoperative Pain Model in Rats. Comp Med 2009; 59:60-71.
36.Vignali DA. Multiplexed particle-based flow cytometric assays. J Immunol Methods 2000; 243:243-255.
37. Gil S, Sepúlveda N, Albina E, Leitão A, Martins C. The low-virulent African swine fever virus (ASFV/NH/P68) induces enhanced expression and production of relevant regulatory cytokines (IFNalpha, TNFalpha and IL12p40) on porcine macrophages in comparison to the highly virulent ASFV/L60. Archiv Virol 2008; 153:1845-1854.
38. Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 2001; 25:386-401.
39. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009; 55:611-622.
40. Zhao S, Fernald RD. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 2005; 12:1047-1064.
41. Schricker T, Berroth A, Pfeiffer U, Schreiber M, Malik E, Schmidt M, et al. Influence of vaginal versus abdominal hysterectomy on perioperative glucose metabolism. Anesth Analg 1996; 83:991-995.
42. Clarke RS, Johnston H, Sheridan B. The influence of anaesthesia and surgery on plasma cortisol, insulin and free fatty acids. Br J Anaesth 1970; 42:295-299.
43. Schricker T, Carli F, Schreiber M, Laftermann R, Georgieff M. Time of peritoneal cavity exposure influences postoperative glucose production. Can J Anaesth 1999; 46:352-358.
44. Vahl TP, Ulrich-Lai YM, Ostrander MM, Dolgas CM, Elfers EE, Seeley RJ, et al. Comparative analysis of ACTH and corticosterone sampling methods in rats. Am J Physiol Endocrinol Metab 2005; 289:823-828.
45. Wiersma J, Kastelijn J. A chronic technique for high frequency blood sampling/transfusion in the freely behaving rat which does not affect prolactin and corticosterone secretion. J Endocrinol 1985; 107:285-292.
46. Ohtani M, Kotaki H, Uchino K, Sawada Y, Iga T. Pharmacokinetic analysis of enterohepatic circulation of buprenorphine and its active metabolite, norbuprenorphine, in rats. Drug Metab Dispos 1994; 22:2-7.
47.Gades NM, Danneman PJ, Wixson SK, Tolley EA. The magnitude and duration of the analgesic effect of morphine, butorphanol, and buprenorphine in rats and mice. Contemp Top Lab Anim Sci 2000; 39:8-13.
48. Brown SM, Holtzman M, Kim T, Kharasch ED. Buprenorphine metabolites, buprenorphine-3-glucuronide and norbuprenorphine-3-glucoronide, are biologically active. Anesthesiology 2011; 115:1251-1260.
49. Vuong C, Van Uum SH, O'Dell LE, Lutfy K, Friedman TC. The effects of opioids and opioid analogs on animal and human endocrine systems. Endocr Rev 2010; 31:98-132.
50. Iyengar S, Kim HS, Wood PL. Mu-, delta-, kappa- and epsilon-opioid receptor modulation of the hypothalamic-pituitary-adrenocortical (HPA) axis: subchronic tolerance studies of endogenous opioid peptides. Brain Res 1987; 435:220-226.
51. degli Uberti EC, Petraglia F, Bondanelli M, Guo AL, Valentini A, Salvadori S, et al. Involvement of mu-opioid receptors in the modulation of pituitary-adrenal axis in normal and stressed rats. J Endocrinol Invest 1995; 18:1-7.
52.Calogero AE, Scaccianoce S, Burrello N, Nicolai R, Muscolo LA, Kling MA, et al. The kappa-opioid receptor agonist MR-2034 stimulates the rat hypothalamic-pituitary-adrenal axis: studies in vivo and in vitro. J Neuroendocrinol 1996; 8:579-585.
53. Leggett JD, Dawe KL, Jessop DS, Fulford AJ. Endogenous nociceptin/orphanin FQ system involvement in hypothalamic-pituitary-adrenal axis responses: relevance to models of inflammation. J Neuroendocrinol 2009; 21:888-897.
54. Delaney G, Dawe KL, Hogan R, Hunjan T, Roper J, Hazell G, et al.  Role of nociceptin/orphanin FQ and NOP receptors in the response to acute and repeated restraint stress in rats. J Neuroendocrinol 2012; 24:1527-1541.
55. Prince-Zullig KL, Murphree E, Reinscheid RK, Janik J, Callahan P. Effect of nociception/Orphanin FQ (N/OFQ) and isoflurane on the corticosterone secretory response in mice lacking the N/OFQ prepropetide (ppN/OFQ-/-). Neuropeptides 2009; 43:201-205.
56. Kapas S, Purbrick A, Hinson JP. Action of opioid peptides on the rat adrenal cortex: stimulation of steroid secretion through a specific mu opioid receptor. J Endocrinol 1995; 144:503-510.
57. Altholtz LY, Fowler KA, Badura LL, Kovacs MS. Comparison of the stress response in rats to repeated isoflurane or CO2:O2 anesthesia used for restraint during serial blood collection via the jugular vein. J Am Assoc Lab Anim Sci 2006; 45:17-22.
58. Gil AG, Silván G, Illera JC. Pituitary-adrenocortical axis, serum serotonin and biochemical response after halothane or isoflurane anaesthesia in rabbits. Lab Anim 2007; 41:411-419.
59. Jacobsen KR, Kalliokoski O, Teilmann AC, Hau J, Abelson KS. The effect of isoflurane anaesthesia and vasectomy on circulating corticosterone and ACTH in BALB/c mice. Gen Comp Endocrinol 2012; 179:406-413.
60. Delogu G, Famularo G, Luzzi S,  Rubcich P, Giardina A, Masciangelo R, et al. General anesthesia mode does not influence endocrine or immunologic profile after open or laparoscopy cholecystectomy. Surg Laparosc Endosc Percutan Tech 1999; 9:326–332.
61. Lattermann R, Wachter U, Georgieff M, Goertz A, Schricker T. Catabolic stress response during and after abdominal surgery. Comparison between two anaesthesia procedures. Der Anaesthesist 2003; 52:500–506.
62. Iyengar S, Kim HS, Wood PL. Effects of kappa opiate agonists on neurochemical and neuroendocrine indices: evidence for kappa receptor subtypes. Life Sci 1986: 39:637-644.
63. Mitsuma T, Hirooka Y, Mori Y, Kayama M, Adachi K, Rhue N, et al. Nociceptin stimulates thyrotropin secretion in rats. Horm Res 1999; 52:140-144.
64. Tal E, Korányi L, Kovács Z, Endröczi E. Short-term effect of morphine on the thyroid gland in male rats. Acta Endocrinol (Copenh) 1984; 105 :511-514.
65. Shi ZX, Levy A, Lightman SL. Thyroid hormone-mediated regulation of corticotropin-releasing hormone messenger ribonucleic acid in the rat. Endocrinology 1994; 134:1577-1580.
66. Johnson EO, Kamilaris TC, Calogero AE, Gold PW, Chrousos GP. Experimentally-induced hyperthyroidism is associated with activation of the rat hypothalamic-pituitary-adrenal axis. Eur J Endocrinol 2005; 153 :177-185.
67. Johnson EO, Calogero AE, Konstandi M, Kamilaris TC, La Vignera S, Chrousos GP. Effects of experimentally induced hyperthyroidism on central hypothalamic-pituitary-adrenal axis function in rats: in vitro and in situ studies. Pituitary 2013; 16:275-286.
68. Börner C, Lanciotti S, Koch T, Höllt V, Kraus J. μ opioid receptor agonist-selective regulation of interleukin-4 in T lymphocytes. J Neuroimmunol 2013; 263:35-42.
69. Peinnequin A, Mouret C, Birot O, Alonso A, Mathieu J, Clarençon D, et al. Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green. BMC Immunol 2004; 5:3.
70. Alaaeddine N, De Montigny C, Sadouk M. Real-time reverse transcription-polymerase chain reaction quantification of tumor necrosis factor alpha messenger in human leukocytes. Clin Lab 2011; 57:799-802.
71. Boland JW, Foulds GA, Ahmedzai SH, Pockley AG. A preliminary evaluation of the effects of opioids on innate and adaptive human in vitro immune function. BMJ Support Palliat Care 2014; 4:357-367.
72. Kennedy LH, Hwang H, Wolfe AM, Hauptman J, Nemzek-Hamlin JA. Effects of buprenorphine and estrous cycle in a murine model of cecal ligation and puncture. Comp Med 2014; 64:270-282.
73.Sharp BM. Opioid receptor expression and intracellular signaling by cells involved in host defense and immunity. Adv Exp Med Biol 2003; 521:98-105.
74. Stein C, Küchler S. Non-analgesic effects of opioids: peripheral opioid effects on inflammation and wound healing. Curr Pharm Des 2012; 18:6053-6069.
75. Declue AE, Yu DH, Prochnow S, Axiak-Bechtel S, Amorim J, Tsuruta K, et al. Effects of opioids on phagocytic function, oxidative burst capacity, cytokine production and apoptosis in canine leukocytes. Vet J 2014; 200 :270-275.
76. Pacifici R, di Carlo S, Bacosi A, Pichini S, Zuccaro P. Pharmacokinetics and cytokine production in heroin and morphine-treated mice. Int J Immunopharmacol 2000; 22:603-614.
77. Chen YL, Law PY, Loh HH. Nuclear factor κB signaling in opioid functions and receptor gene expression. J Neuroimmune Pharmacol 2006; 1:270–279.
78. Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunol Rev 2008; 226:205-218.
79. Ninković J, Roy S. Role of the mu-opioid receptor in opioid modulation of immune function. Amino Acids 2013; 45:9-24.
80. Walker JS. Anti-inflammatory effects of opioids. Adv Exp Med Biol 2003; 521:148-160.
81. Gavériaux-Ruff C, Simonin F, Filliol D, Kieffer BL. Enhanced humoral response in kappa-opioid receptor knockout mice. J Neuroimmunol 2003; 134:72-81.
82. Spetea M, Harris HE, Berzetei-Gurske IP, Klareskog L, Schmidhammer H. Binding, pharmacological and immunological profiles of the delta-selective opioid receptor antagonist HS 378. Life Sci 2001; 69:1775-1782.
83. Ordaz-Sanchez I, Weber RJ, Rice KC,  Zhang X, Rodríguez-Padilla C, Tamez-Guerra R, et al. Chemotaxis of human and rat leukocytes by the delta-selective non-peptidic opioid SNC 80. Ver Latinoam Microbiol 2003; 45:16–23.
84. Wang Q, Chao D, Chen T, Sandhu H, Xia Y. δ-Opioid receptors and inflammatory cytokines in hypoxia: differential regulation between glial and neuron-like cells. Transl Stroke Res 2014; 5:476-483.
85. Chavez-Valdez R, Kovell L, Ahlawat R, McLemore GL, Wills-Karp M, Gauda EB. Opioids and clonidine modulate cytokine production and opioid receptor expression in neonatal immune cells. J Perinatol 2013; 33:374-382.
86. Gavioli EC, de Medeiros IU, Monteiro MC, Calo G, Romão PR. Nociceptin/orphanin FQ-NOP receptor system in inflammatory and immune-mediated diseases. Vitam Horm 2015; 97:241-266.
87. Thompson JP, Serrano-Gomez A, McDonald J, Ladak N, Bowrey S, Lambert DG. The Nociceptin/Orphanin FQ system is modulated in patients admitted to ICU with sepsis and after cardiopulmonary bypass. PLoS One 2013; 8:e76682.
88. Swain MG, Appleyard C, Wallace J, Wong H, Le T. Endogenous glucocorticoids released during acute toxic liver injury enhance hepatic IL10 synthesis and release. Am J Physiol 1999; 276:199-205.
89. Wang SC, Ohata M, Schrum L, Rippe RA, Tsukamoto H. Expression of interleukin-10 by in vitro and in vivo activated hepatic stellate cells. J Biol Chem 1998; 273:302-308.
90. Smith EM, Cadet P, Stefano GB, Opp MR, Hughes TK.  IL10 as a mediator in the HPA axis and brain. J Neuroimmunology 1999; 100:140-148.
91. Tu H, Rady PL, Juelich T, Tyring SK, Koldzic-Zivanovic N, Smith EM, et al. Interleukin-10 regulated gene expression in cells of hypothalamic-pituitary-adrenal axis origin. Cell Mol Neurobiol 2007; 27:161-170.
92. Flondor M, Hofstetter C, Boost KA, Betz C, Homann M, Zwissler B. Isoflurane inhalation after induction of endotoxemia in rats attenuates the systemic cytokine response. Eur Surg Res 2008; 40:1-6.
93. Fuentes JM, Talamini MA, Fulton WB, Hanly EJ, Aurora AR, De Maio A. General anesthesia delays the inflammatory response and increases survival for mice with endotoxic shock. Clin Vaccine Immunol 2006; 13 :281-288.
94.Qin Z, Lv E, Zhan L, Xing X, Jiang J, Zhang M. Intravenous pretreatment with emulsified isoflurane preconditioning protects kidneys against ischemia/reperfusion injury in rats. BMC Anesthesiol 2014; 14: 28.
95. Pang XP, Hershman JM, Mirell CJ, Pekary AE. Impairment of hypothalamic-pituitary-thyroid function in rats treated with human recombinant tumor necrosis factor-alpha (cachectin). Endocrinology 1989; 125:76-84.
96. Van Haasteren GA, van der Meer MJ, Hermus AR, Linkels E, Klootwijk W, Kaptein E, et al. Different effects of continuous infusion of interleukin-1 and interleukin-6 on the hypothalamic-hypophysial-thyroid axis. Endocrinology 1994; 135:1336-1345.
97. Jablonski P, Howden BO, Baxter K. Influence of buprenorphine analgesia on post-operative recovery in two strains of rats. Lab Anim 2001; 35:213-222.
98. Morgan D, Mitzelfelt JD, Koerper LM, Carter CS. Effects of morphine on thermal sensitivity in adult and aged rats. J Gerontol A Biol Sci Med Sci 2012; 67:705-713.