Protosappanin A protects against atherosclerosis via anti- hyperlipidemia, anti-inflammation and NF-κB signaling pathway in hyperlipidemic rabbits

Document Type : Original Article


1 Department of Cardiology, Shang Hai PuDong New Area People’s hospital, Shanghai, China

2 Department of Cardiology, Shanghai East Hospital, New Area of Pu Dong, Shanghai, China


Objective(s): Protosappanin A (PrA) is an effective and major ingredient of Caesalpinia sappan L. The current study was aimed to explore the effect of PrA on atherosclerosis (AS).
Materials and Methods: Firstly, the experimental model of AS was established in rabbits by two-month feeding of high fat diet. Then, the rabbits were randomly divided into five groups and treated with continuous high lipid diet (model control), high lipid diet containing rosuvastatin (positive control), 5 mg/kg PrA (low dose) or 25 mg/kg PrA (high dose).
Results: Our results showed that PrA markedly alleviated AS as indicated by hematoxylin/eosin (HE) staining. PrA also reduced hyperlipidemia (as demonstrated by the serum levels of total blood cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) and high-density lipoprotein (HDL)) in a time and dose-dependent manner, and decreased inflammation (as indicated by the serum levels of matrix metalloproteinase-9 [MMP-9], interleukin-6 [IL-6] and tumor necrosis factor-α [TNF-α]). Moreover, PrA significantly inactivated nuclear factor kappa B (NF-κB) signaling as indicated by nuclear NF-κB p65 protein expression, as well as the mRNA expression and serum levels of downstream genes, interferon-γ (IFN-γ) and interferon-gamma-inducible protein 10 (IP10).
Conclusion: This study proved that PrA might protect against atherosclerosis via anti-hyperlipidemia, anti-inflammation and NF-κB signaling pathways in hyperlipidemic rabbits.


Main Subjects

1. Badami S, Moorkoth S, Rai SR, Kannan E, Bhojraj S. Antioxidant activity of Caesalpinia sappan heartwood. Biol Pharm Bull. 2003; 26:1534-1537.
2. Hikino H, Taguchi T, Fujimura H, Hiramatsu Y. Antiinflammatory principles of Caesalpinia sappan wood and of Haematoxylon campechianum wood. Planta Med 1977.
3. Kim E-C, Hwang Y-S, Lee H-J, Lee S-K, Park M-H, Jeon B-H, et al. Caesalpinia sappan induces cell death by increasing the expression of p53 and p21WAF1/CIP1 in head and neck cancer cells. Am J Chin Med. 2005; 33:405-414.
4. Sireeratawong S, Piyabhan P, Singhalak T, Wongkrajang Y, Temsiririrkkul R, Punsrirat J, et al. Toxicity evaluation of sappan wood extract in rats. J Med Assoc Thai 2011; 93:50.
5. Wu J, Hou J, Zhang M, Zou Y, Yu B, editors. Protosappanin a, an immunosuppressive constituent from a Chinese herb, prolongs graft survival and attenuates acute rejection in rat heart allografts. Transplantation proceedings; 2008: Elsevier.
6. Wu J, Zhang M, Jia H, Huang X, Zhang Q, Hou J, et al. Protosappanin A induces immunosuppression of rats heart transplantation targeting T cells in grafts via NF-κB pathway. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:83-92.
7. Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003; 170:191-203.
8. Karpe F, Steiner G, Uffelman K, Olivecrona T, Hamsten A. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis. 1994; 106:83-97.
9. Friedman R, Moore S, Singal D. Repeated endothelial injury and induction of atherosclerosis in normolipemic rabbits by human serum. Lab Invest. 1975; 32:404-415.
10. Hu M-Y, Li Y-L, Jiang C-H, Liu Z-Q, Qu S-L, Huang Y-M. Comparison of lycopene and fluvastatin effects on atherosclerosis induced by a high-fat diet in rabbits. Nutrition. 2008; 24:1030-1038.
11. Moazed TC, Campbell LA, Rosenfeld ME, Grayston JT, Kuo C-c. Chlamydia pneumoniae infection accelerates the progression of atherosclerosis in apolipoprotein E—deficient mice. J Infect Dis 1999;180:238-241.
12. Thirumalai T, Tamilselvan N, David E. Hypolipidemic activity of Piper betel in high fat diet induced hyperlipidemic rat. J Acute Disease 2014; 3:131-135.
13. ørgen Jeppesen J, Hein HO, Suadicani P, Gyntelberg F. Triglyceride concentration and ischemic heart disease an eight-year follow-up in the Copenhagen male study. Circulation 1998; 97:1029-36.
14. Maseri A. Inflammation, atherosclerosis, and ischemic events—exploring the hidden side of the moon. N Engl J Med 1997; 336:1014-1016.
15. McKellar GE, McCarey DW, Sattar N, McInnes IB. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol 2009; 6:410-417.
16. Haddy N, Sass C, Droesch S, Zaiou M, Siest G, Ponthieux A, et al. IL-6, TNF-α and atherosclerosis risk indicators in a healthy family population: the STANISLAS cohort. Atherosclerosis 2003; 170:277-283.
17. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 2000; 148:209-214.
18. Klinghammer L, Urschel K, Cicha I, Lewczuk P, Raaz-Schrauder D, Achenbach S, et al. Impact of telmisartan on the inflammatory state in patients with coronary atherosclerosis–influence on IP-10, TNF-α and MCP-1. Cytokine 2013; 62:290-296.
19. Loftus I, Naylor A, Bell P, Thompson M. Matrix metalloproteinases and atherosclerotic plaque instability. Br J Surg 2002;89:680-694.
20. Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 2008;75:346-359.
21. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases structure, function, and biochemistry. Circ Res 2003; 92:827-839.
22. Cooper M, Lindholm P, Pieper G, Seibel R, Moore G, Nakanishi A, et al. Myocardial nuclear factor-κB activity and nitric oxide production in rejecting cardiac allorafts Transplantation 1998; 66:838-844.
23. Brand K, Page S, Walli AK, Neumeier D, Baeuerle PA. Role of nuclear factor‐kappa B in atherogenesis. Exp Physiol 1997; 82:297-304.
24. Baldwin Jr AS. The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 1996; 14:649-681.
25. Gupta S, Pablo AM, c Jiang X, Wang N, Tall AR, Schindler C. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 1997; 99:2752.
26. Jones SP, Gibson MF, Rimmer DM, Gibson TM, Sharp BR, Lefer DJ. Direct vascular and cardioprotective effects of rosuvastatin, a new HMG-CoA reductase inhibitor. J Am Coll Cardiol 2002; 40:1172-1178.
27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001; 25:402-408.
28. Jessberger R, Podust V, Hubscher U, Berg P. A mammalian protein complex that repairs double-strand breaks and deletions by recombination. J Biol Chem 1993; 268:15070-15079.
29. Crouse JR, Raichlen JS, Riley WA, Evans GW, Palmer MK, O’Leary DH, et al. Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis: the METEOR Trial. JAMA 2007; 297:1344-53.
30. Laakso M, Sarlund H, Salonen R, Suhonen M, Pyörälä K, Salonen JT, et al. Asymptomatic atherosclerosis and insulin resistance. Arterioscler Thromb 1991;11:1068-1076.
31. Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 2013; 19:892-900.
32. Hansson GK. Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 2001; 21:1876-1890.
33. Li S-L, Zhang Y, Lin W, Liu J, Chen S-Y, Meng S, et al. Relationship between markers of inflammaion and serum lipd levels in healthy persons and patients with pure hyperlipemia. Chin J Cardiovasc Rehabil Med 2010; 19:227.
34. Chen X, Xun K, Chen L, Wang Y. TNF‐α, a potent lipid metabolism regulator. Cell Biochem Funct 2009; 27:407-416.
35. Feingold KR, Grunfeld C. Role of cytokines in inducing hyperlipidemia. Diabetes 1992;41(Supplement 2):97-101.
36. Libby P, Ridker PM. Novel inflammatory markers of coronary risk theory versus practice. Circulation 1999; 100:1148-1150.
37. Van Gaal LF, Mertens IL, Christophe E. Mechanisms linking obesity with cardiovascular disease. Nature 2006;444:875-880.