Efficiency of naringin against reproductive toxicity and testicular damages induced by bisphenol A in rats

Document Type : Original Article


1 Department of Pharmacology, School of Medicine, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 Department of Toxicology, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran

3 Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

4 Department of Physiology, Student Research Committee of Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran

5 Health Research Institute, Diabetes Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

6 Department of Histology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran


Objective(s): Bisphenol A (BPA) as a synthetic compound is applied in many plastic industries. BPA has been reported to have endocrine-disrupting feature with cytotoxic effects. The study aimed to evaluate the efficiency of Naringin against testicular toxicity induced by BPA in adult rats.
Materials and Methods: The animals were assigned into six groups of control, BPA-treated (50 mg/kg), BPA+Naringin-administrated (40, 80, 160 mg/kg) and Naringin-treated (160 mg/kg) for 30 days. At the end of experiments, testicular weight, total testicular protein, epididymal sperm count, testicular enzymes, serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone and estradiol, testicular enzymatic and non-enzymatic antioxidants and histopathology of testis tissue were evaluated by their own methods.  
Results: The results showed a reduction in testicular weight, total testicular protein, epididymal sperm count, testicular enzymes (alkaline phosphatase and lactate dehydrogenase) and decrease in the serum TSH, LH, testosterone and estradiol in BPA-administrated rats. Furthermore, BPA reduced the enzyme activities of glutathione peroxidase, superoxide dismutase, and catalase in testis tissue. Also, BPA caused an induction in lipid peroxidation and increase in reactive oxygen species levels, whereas it decreased the glutathione content of testis tissue. Histological findings exhibited seminiferous tubules vacuoles, atrophy and separation of the germinal epithelium in BPA-administrated rats. Oral administration of Naringin along with BPA normalized the biochemical, morphological and histological changes and reduced the testicular toxic condition.
Conclusion: These results demonstrated that Naringin significantly managed male reproductive toxicity by antioxidant capabilities, preventing morphological modifications and escalating defense mechanism, thereby reducing oxidative stress from BPA-induced damage.


Main Subjects

1. Gurunath S, Pandian Z, Anderson RA, Bhattacharya S. Defining infertility a systematic review of prevalence studies. Hum Reprod Update 2011;17:575-588.
2.    Meeker JD. Exposure to environmental endocrine disrupting compounds and men’s health. Maturitas 2010;66:236-241.
3.    Mohapatra D, Brar S, Tyagi R, Surampalli R. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge fate of bisphenol A. Chemosphere 2010;78:923-941.
4.    Vandenberg L, Hauser R, Marcus M, Olea N, Welshons W. Human exposure to bisphenol A (BPA). Reprod Toxicol 2007; 24: 139–177.
5.    Geens T, Aerts D, Berthot C, Bourguignon J-P, Goeyens L, Lecomte P, et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol 2012;50:3725-3740.
6.    Dobrzyńska MM, Jankowska‐Steifer EA, Tyrkiel EJ, Gajowik A, Radzikowska J, Pachocki KA. Comparison of the effects of bisphenol a alone and in a combination with X‐irradiation on sperm count and quality in male adult and pubescent mice. Environ Toxicol 2014;29:1301-1313.
7.    Dobrzyńska MM, Radzikowska J. Genotoxicity and reproductive toxicity of bisphenol A and X-ray/bisphenol A combination in male mice. Drug Cheml Toxicol 2013;36:19-26.
8.    Tamilselvan P, Langeswaran K, Vijayaprakash S, Revathy R, Balasubramanian MP. Efficiency of lycopene against reproductive and developmental toxicity of bisphenol A in male Sprague Dawley rats. Biomed Prevent Nutrit. 2014;4:491-498.
9.    Muñoz-de-Toro M, Markey CM, Wadia PR, Luque EH, Rubin BS, Sonnenschein C, et al. Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology. 2005;146:4138-4147.
10.    Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, Van Der Saag PT, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 1998;139:4252-3263.
11.    Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, et al. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol. 2007;24:199-224.
12.    Tainaka H, Takahashi H, Umezawa M, Tanaka H, Nishimune Y, Oshio S, et al. Evaluation of the testicular toxicity of prenatal exposure to bisphenol A based on microarray analysis combined with MeSH annotation. J Toxicol Sci 2012;37:539-548.
13.    Tiwari D, Vanage G. Mutagenic effect of Bisphenol A on adult rat male germ cells and their fertility. Reprod Toxicol 2013;40:60-68.
14.    Salian S, Doshi T, Vanage G. Neonatal exposure of male rats to Bisphenol A impairs fertility and expression of sertoli cell junctional proteins in the testis. Toxicology 2009;265:56-67.
15.    D’Cruz SC, Jubendradass R, Jayakanthan M, Rani SJA, Mathur PP. Bisphenol A impairs insulin signaling and glucose homeostasis and decreases steroidogenesis in rat testis: an in vivo and in silico study. Food  Chem Toxicol 2012;50:1124-1133.
16.    Kabuto H, Hasuike S, Minagawa N, Shishibori T. Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ Res 2003;93:31-35.
17.    Fang Y, Zhou Y, Zhong Y, Gao X, Tan T. Effect of vitamin E on reproductive functions and anti-oxidant activity of adolescent male mice exposed to bisphenol A. J Hygiene Res. 2013;42:18-22.
18.    El-Beshbishy HA, Aly HA, El-Shafey M. Lipoic acid mitigates bisphenol A-induced testicular mitochondrial toxicity in rats. Toxicol Ind Health 2013;29:875-887.
19.    Xi W, Lee C, Yeung W, Giesy JP, Wong M, Zhang X, et al. Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus–pituitary–gonadal axis of CD-1 mice. Reprod Toxicol. 2011;31:409-417.
20.    Ho Y-S, Magnenat J-L, Gargano M, Cao J. The nature of antioxidant defense mechanisms: a lesson from transgenic studies. Environ Health Perspect 1998;106:1219-1225.
21.    Hales DB, Allen JA, Shankara T, Janus P, Buck S, Diemer T, et al. Mitochondrial function in Leydig cell steroidogenesi: Ann N Y Acad Sci 2005;1061:120-134.
22.    Abdel-Monaim M, Abo-Elyousr K, Morsy K. Effectiveness of plant extracts on suppression of damping-off and wilt diseases of lupine (Lupinus termis Forsik. Crop Protect 2011;30:185-191.
23.    Podder B, Song H-Y, Kim Y-S. Naringenin exerts cytoprotective effect against paraquat-induced toxicity in human bronchial epithelial BEAS-2B cells through NRF2 activatio. J Microbiol Biotechnol. 2014;24:605-613.
24.    Jain A, Yadav A, Bozhkov A, Padalko V, Flora S. Therapeutic efficacy of silymarin and naringenin in reducing arsenic-induced hepatic damage in young rats. Ecotoxicol Environ Safet. 2011;74:607-614.
25.    Kannappan S, Palanisamy N, Anuradha CV. Suppression of hepatic oxidative events and regulation of eNOS expression in the liver by naringenin in fructose-administered rats. Europ J Pharmacol 2010;645:177-184.
26.    Fang F, Tang Y, Gao Z, Xu Q. A novel regulatory mechanism of naringenin through inhibition of T lymphocyte function in contact hypersensitivity suppression. Biochem Biophys Res Commun. 2010;397:163-169.
27.    Renugadevi J, Prabu SM. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology 2009;256:128-134.
28.    Renugadevi J, Prabu SM. Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin. Exp Toxicol Pathol 2010;62:171-181.
29.    Akondi RB, Kumar P, Annapurna A, Pujari M. Protective effect of rutin and naringin on sperm quality in streptozotocin (STZ) induced type 1 diabetic rats. Iran J Pharm res 2011;10:585-393.
30.    Ahangarpour A, Oroojan AA, Khorsandi L, Arzani G, Afshari G. Effects of betulinic acid on the male reproductive system of a streptozotocin-nicotinamide-induced diabetic mouse model. World J Men’s Health 2016;34:209-216.
31.    Ahangarpour A, Oroojan AA, Heidari H. Effects of exendin-4 on male reproductive parameters of d-galactose induced aging mouse model. World J Men’s Health 2014;32:176-183.
32.    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-275.
33.    Ahangarpour A, Zeidooni L, Rezaei M, Alboghobeish S, Samimi A, Oroojan AA. Protective effect of metformin on toxicity of butyric acid and arsenic in isolated liver mitochondria and langerhans islets in male mice: an in vitro study. Iran J Basic Med Sci 2017;20:1297-1303.
34.    Ahangarpour A, Alboghobeish S, Oroojan AA, Zeidooni L, Samimi A, Afshari G. Effects of combined exposure to chronic high-fat diet and arsenic on thyroid function and lipid profile in male mouse. Biol Trace Elem Res 2017:1-12.
35.    Ahangarpour A, Alboghobeish S, Rezaei M, Khodayar MJ, Oroojan AA, Zainvand M. Evaluation of diabetogenic mechanism of high fat diet in combination with Arsenic exposure in male mice. Iran J Pharm Res 2017;3:184-193.
36.    Ahangarpour A, Zeidooni L, Samimi A, Alboghobeish S, Khorsandi LS, Moradi M. Chronic exposure to arsenic and high fat diet additively induced cardiotoxicity in male mice. Res Pharm Sci 2018;13:47-53.
37.    Ahangarpour A, Oroojan AA, Rezaei M, Khodayar MJ, Alboghobeish S, Zeinvand M. Effects of butyric acid and arsenic on isolated liver mitochondria and pancreatic islets of male mouse. Gastroenterol  Hepatol  Bed Bench. 2017:134-139.
38.    Lawrence RA. Reprint of “glutathione peroxidase activity in selenium-deficient rat liver”. Biochem  Biophysic Res Com 2012;425:503-509.
39.    Talebi AR, Khorsandi L, Moridian M. The effect of zinc oxide nanoparticles on mouse spermatogenesis. J Assist Reprod Genet 2013;30:1203-1209.
40.    Shalaby KA, Saleh EM. Ameliorative effect of honey bee propolis on the nonylphenol induced-reproductive toxicity in male Albino rats. Aust J Basic Applied Sci 2011;5:918-927.
41.    Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curren Opin Obstet Gynecol 2006;18:325-332.
42.    Anjum S, Rahman S, Kaur M, Ahmad F, Rashid H, Ansari RA, et al. Melatonin ameliorates bisphenol A-induced biochemical toxicity in testicular mitochondria of mouse. Food Chem Toxicol 2011;49:2849-2854.
43.    Revathy R, Langeswaran K, Ponnulakshmi R, Balasubramanian MP, Selvaraj J. Ipomoea batatas tuber efficiency on bisphenol A-induced male reproductive toxicity in sprague dawley rats. J Biol Active Prod Nature 2017;7:118-130.
44.    Working P, Chellman G. The testis, spermatogenesis and the excurrent duct system. Reprod Toxicol Infertil 1993:55-76.
45.    Mantovani A. Hazard identification and risk assessment of endocrine disrupting chemicals with regard to developmental effects. Toxicology 2002;181:367-370.
46.    Chauhan A, Agarwal M, Kushwaha S, Mutreja A. Suppression of fertility in male albino rats following the administration of 50% ethanolic extract of Aegle marmelos. Contraception 2007;76:474-481.
47.    Jin P, Wang X, Chang F, Bai Y, Li Y, Zhou R, et al. Low dose bisphenol A impairs spermatogenesis by suppressing reproductive hormone production and promoting germ cell apoptosis in adult rats. J Biomed Res 2013;27:135-139.
48.    Nanjappa MK, Simon L, Akingbemi BT. The industrial chemical bisphenol A (BPA) interferes with proliferative activity and development of steroidogenic capacity in rat Leydig cells. Biol Reprod 2012;86:135, 1-12.
49.    Akingbemi BT, Sottas CM, Koulova AI, Klinefelter GR, Hardy MP. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology 2004;145:592-603.
50.    Kim JY, Han EH, Kim HG, Oh KN, Kim SK, Lee KY, et al. Bisphenol A-induced aromatase activation is mediated by cyclooxygenase-2 up-regulation in rat testicular Leydig cells. Toxicol Lett 2010;193:200-208.
51.    Jahan S, Ain QU, Ullah H. Therapeutic effects of quercetin against bisphenol A induced testicular damage in male Sprague Dawley rats. Syst Biol Reprod Med 2016;62:114-124.
52.    Sinha N, Narayan R, Saxena D. Effect of endosulfan on the testis of growing rats. Bull Environ Contam Toxicol 1997;58:79-86.
53.    Turner R, McDonnell S. Alkaline phosphatase in stallion semen. Characterization and clinical applications: Theriogenology 2003;60:1-10.
54.    Agarwal A, Prabakaran SA, Said TM. Prevention of oxidative stress injury to sperm. J Androl 2005;26:654-660.
55.    Merker H, Günther T, Höllriegl V, Vormann J, Schümann K. Lipid peroxidation and morphology of rat testis in magnesium deficiency. Andrologia 1996;28:43-51.
56.    Thiele J, Freisleben H, Fuchs J, Ochsendorf F. Ascorbic acid and urate in human seminal plasma: determination and interrelationships with chemiluminescence in washed semen. Hum Reprod 1995;10:110-115.
57.    Kao S-H, Chao H-T, Chen H-W, Hwang TI, Liao T-L, Wei Y-H. Increase of oxidative stress in human sperm with lower motility. Fertil Steril 2008;89:1183-1190.
58.    Chitra K, Latchoumycandane C, Mathur P. Induction of oxidative stress by bisphenol A in the epididymal sperm of rats. Toxicology 2003;185:119-127.
59.    Mershiba SD, Dassprakash MV, Saraswathy SD. Protective effect of naringenin on hepatic and renal dysfunction and oxidative stress in arsenic intoxicated rats. Mol Biol Rep 2013;40:3681-1391.
60.    Hermenean A, Ardelean A, Stan M, Herman H, Mihali C-V, Costache M, et al. Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. Chem Biol Interact 2013;205:138-147.
61.    Wang J, Yang Z, Lin L, Zhao Z, Liu Z, Liu X. Protective effect of naringenin against lead-induced oxidative stress in rats. Biol Trace Elem Res 2012;146:354-359.
62.    Prabu SM, Shagirtha K, Renugadevi J. Reno-protective effect of naringenin in combination with vitamins C and E on cadmium induced oxidative nephrotoxicity in rats. J Pharm Res 2011;4:1921-1926.
63.    Badary OA, Abdel-Maksoud S, Ahmed WA, Owieda GH. Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci 2005;76:2125-2135.
64.    Mostafa HES, Abd El‐Baset SA, Kattaia AA, Zidan RA, Sadek A, Mona M. Efficacy of naringenin against permethrin‐induced testicular toxicity in rats. Int J Exp Pathol 2016;97:37-49.
65.    Ciz M, Denev P, Kratchanova M, Vasicek O, Ambrozova G, Lojek A. Flavonoids inhibit the respiratory burst of neutrophils in mammals. Oxid Med Cell Longev 2012:43-49.
66.    Comporti M. Three models of free radical-induced cell injury. Chemi Biol Interact 1989;72:1-56.
67.    Mínguez-Alarcón L, Hauser R, Gaskins AJ. Effects of bisphenol A on male and couple reproductive health. Fertil Steril 2016;106:864-870.
68.    Sanja S, Sheth N, Joshi D, Golwala D, Patel Dhaval RM. Anti inflammatory activity of Ipomoea reniformis methanolic extract. Inter J Pharm Sci Drug Res 2009;1:34-39.
69.    Qu J-H, Hong X, Chen J-F, Wang Y-B, Sun H, Xu X-L, et al. Fenvalerate inhibits progesterone production through cAMP-dependent signal pathway. Toxicol lett 2008;176:31-39.
70.    Kono Y, Fridovich I. Superoxide radical inhibits catalase. J Biol Chem 1982;257:5751-5754.
71.    Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev 2008;1:15-24.
72.    Mukherjee S, Mukhopadhyay P. Studies on arsenic toxicity in male rat gonads and its protection by high dietary protein supplementation. Al Ameen J Med Sci 2009;2:73-77.
73.    Peltola V, Huhtaniemi I, Ahotupa M. Antioxidant enzyme activity in the maturing rat testis. J Androl 1992;13:450-455.
74.    Chitra K, Latchoumycandane C, Mathur P. Effect of nonylphenol on the antioxidant system in epididymal sperm of rats. Arch Toxicol 2002;76:545-551.
75.    Kaneko T, Iuchi Y, Kobayashi T, Fujii T, Saito H, Kurachi H, et al. The expression of glutathione reductase in the male reproductive system of rats supports the enzymatic basis of glutathione function in spermatogenesis: Eur J Biochem 2002;269:1570-1578.