TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs

Document Type : Original Article


1 Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei, China

2 Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China

3 Department of Pathology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China


Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).
Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were used to elucidate the related mechanisms by which TGF-β1 adjusts myocardial differentiation in rat BMSCs.
Results: Immunocytochemistry revealed that cTnI and Cx43 expressed positively in the cells that were transduced with TGF-β1. The results of Western blot (WB) test showed that the levels of intranuclear β-catenin and total β-catenin were all significantly decreased. However, the cytoplasmic β-catenin level was largely unchanged. Moreover, the levels of GSK-3β were largely unchanged in BMSCs, whereas phosphorylated GSK-3β was significantly decreased in BMSCs. When given the activator of Wnt/β-catenin pathway (lithium chloride, LiCl) to BMSCs transducted with TGF-β1, β-catenin was increased, while phosphorylated β-catenin was decreased. In addition, cyclinD1, MMP-7, and c-Myc protein in BMSCs transducted with Lenti-TGF-β1-GFP were significantly lower.
Conclusion: These results indicate that TGF-β1 promotes BMSCs cardiomyogenic differentiation by promoting the phosphorylation of β-catenin and inhibiting cyclinD1, MMP-7, and c-Myc expression in Wnt/β-catenin signaling pathway.


1. Saparov A, Ogay V, Nurgozhin T, Chen WCW, Mansurov N, Issabekova A, et al. Role of the immune system in cardiac tissue damage and repair following myocardial infarction. Inflamm Res 2017; 66: 739-751.
2. Barron CC, Lalu MM, Stewart DJ, Fergusson D, Yang H, Moher D, et al. Assessment of safety and efficacy of mesenchymal stromal cell therapy in preclinical models of acute myocardial infarction: a systematic review protocol. Syst Rev 2017; 6:226-233.
3. Miao C, Lei M, Hu W, Han S, Wang Q. A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardialinfarction. Stem Cell Res Ther 2017; 8:242-247.
4. Qi K, Li N, Zhang Z, Melino G. Tissue regeneration: The crosstalk between mesenchymal stem cells and immune response. Cell Immunol 2018; 326: 86-93.
5. Maranda EL, Rodriguez-Menocal L, Badiavas EV. Role of mesenchymal stem cells in dermal repair in burns and diabetic wounds. Curr Stem Cell Res Ther 2017; 12: 61-70.
6. Jiang H, Wang H, Liu T, Yang Z, Zhang R, Han H. Co-cultured the MSCs and cardiomyocytes can promote the growth of cardiomyocytes. Cytotechnology 2018; 70:793-806.
7. Rabbani S, Soleimani M, Sahebjam M, Imani M, Nassiri SM, Atashi A, et al. Effects of endothelial and mesenchymal stem cells on improving myocardial function in a sheep animal model. J Tehran Heart Cent 2017; 12: 65-71.
8. Wu Z, Chen G, Zhang J, Hua Y, Li J, Liu B,  et al. Treatment of myocardial infarction with gene-modified mesenchymal stem cells in a Small Molecular Hydrogel. Sci Rep 2017; 7:15826-15836.
9. Soltani L, Rahmani HR, Daliri Joupari M, Ghaneialvar H, Mahdavi AH, Shamsara M. Ovine fetal mesenchymal stem cell differentiation to cardiomyocytes, effects of co-culture, role of small molecules; reversine and 5-azacytidine. Biol Chem 2016; 397:1355-1364.  
10. Gao Q, Guo M, Jiang X, Hu X, Wang Y, Fan Y. A cocktail method for promoting cardiomyocyte differentiation from bone marrow-derived mesenchymal stem cells. Stem Cells Int 2014; 2014:162024-162034.
11. Fujio K, Komai T, Inoue M, Morita K, Okamura T, Yamamoto K. Revisiting the regulatory roles of the TGF-β family of cytokines. Autoimmun Rev 2016; 15: 917-922.
12. van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development 2009; 136: 3205-3214.
13. Qyang Y, Martin-Puig S, Chiravuri M, Chen S, Xu H, Bu L, et al. The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell 2007; 1:165-179.
14. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017; 8:90579-90604.
15. Si Y, Bai J, Wu J, Li Q, Mo Y, Fang R, et al. LncRNA PlncRNA1 regulates proliferation and differentiation of hair follicle stem cells through TGFβ1mediated Wnt/βcatenin signal pathway. Mol Med Rep 2018; 17: 1191-1197.
16. Xiang T, Zhang S, Cheng N, Ge S, Wen J, Xiao J, et al. Oxidored-nitro domain-containing protein 1 promotes liver fibrosis by activating the Wnt/β-catenin signaling pathway in vitro. Mol Med Rep 2017; 16: 5050-5054.
17. Lv Y, Gao CW, Liu B, Wang HY, Wang HP. BMP-2 combined with salvianolic acid B promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Kaohsiung J Med Sci 2017; 33:477-485.
18. Lv Y, Liu B, Liu Y, Wang HY, Wang HP. TGF-β1 combined with Sal-B promotes cardiomyocyte differentiation of rat mesenchymal stem cells. Experimental and Therapeutic Medicine 2018; 15: 5359-5364.
19. Lee DK, Yi T, Park KE, Lee HJ, Cho YK, Lee SJ, et al. Non-invasiv characterization of the adipogenic differentiation of human bone marrow-derivedmesenchymal stromal cells by HS-SPME/GC-MS. Sci Rep 2014;4:6550-6557.
20. Leijten J, Georgi N, Moreira Teixeira L, van Blitterswijk CA, Post JN, Karperien M. Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogeniccell fate. Proc Natl Acad Sci U S A 2014; 111:13954-13959.
21. Hu Y, Zhang Q, Zhang L, Tang XX, He HY. Basic fibroblast growth factor lentiviral vector-transfected sheep bone marrow mesenchymalstem cells and non-specific osteogenic gene expression. Mol Med Rep  2015; 12: 267-272.
22. Abedi M, Mesbah-Namin SA, Noori-Zadeh A, Tiraihi T, Taheri T. Human wild-type superoxide dismutase 1 gene delivery to rat bone marrow stromal cells: its importance and potential future trends. Iran J Basic Med Sci 2018; 21:688-694.
23. Lv Y, Liu B, Wang HP, Zhang L. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGFβ1 improves cardiac function in heart failure rats. Brazilian Journal of Medical and Biological Research 2016; 49: e5273. 
24. Tao LL, Ding D, Yin WH, Peng JY, Hou CJ, Liu XP, et al. TSA increases C/EBPα expression by increasing its lysine acetylation in hepatic stellate cells. Mol Med Rep 2017; 16: 6088-6093.
25. Cai B, Tan X, Zhang Y, Li X, Wang X, Zhu J, et al. Mesenchymal stem cells and cardiomyocytes interplay to prevent myocardial hypertrophy. Stem Cells Transl Med 2015; 4:1425-1435.
26. Rouhi L, Kajbafzadeh AM, Modaresi M, Shariati M, Hamrahi D. Autologous serum enhances cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells in the presence of transforming growth factor-beta1 (TGF-beta 1). In vitro Cell Dev Biol Anim 2013; 49:287-294.
27. Gajdusek CM, Luo Z, Mayberg MR. Basic fibroblast growth factor and transforming growth factor beta-1: synergistic mediators of angiogenesis in vitro. J Cell Physiol 1993; 157:133-144.  
28. Hu Y, Zhang Y, Tian K.,  Xun C, Wang S,  Lv D. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Mol Med Rep 2016; 13:49-58.
29. Raimondo S, Penna C, Pagliaro P, Geuna S. Morphological characterization of GFP stably transducted adult mesenchymal bone marrow stem cells. J Anat 2006; 208:3-12.
30. Li TS, Hayashi M, Ito H, Furutani A, Murata T, Matsuzaki M, et al. Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor beta-preprogrammed bone marrow stem cells. Circulation 2005; 111: 2438-2445.
31. Dai F, Du P, Chang Y, Ji E, Xu Y, Wei C, et al. Downregulation of miR-199b-5p inducing differentiation of bone-marrow mesenchymal stem cells (BMSCs) toward cardiomyocyte-like cells via HSF1/HSP70 Pathway. Med Sci Monit 2018; 24: 2700-2710.
32. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17:9-26.
33. Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. EMBO J 2012; 31:2714-2736.
34.  Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, Woodgett J, et al. Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci U S A 2003; 100: 4610-4615.
35. Qu J, Zhou J, Yi XP, Dong B, Zheng H, Miller LM, et al. Cardiac-specific haploinsufficiency of beta-catenin attenuates cardiac hypertrophy but enhances fetal gene expression in response to aortic constriction. J Mol Cell Cardiol 2007; 43:319-326.
36. Chen X, Shevtsov SP, Hsich E, Cui L, Haq S, Aronovitz M, et al. The beta-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. Mol Cell Biol 2006; 26:4462-4473. 
37.  Hahn JY, Cho HJ, Bae JW, Yuk HS, Kim KI, Park KW, et al. Beta-catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts. J Biol Chem 2006; 281:30979-30989.
38. Baurand A, Zelarayan L, Betney R, Gehrke C, Dunger S, Noack C, et al. Beta-catenin downregulation is required for adaptive cardiac remodeling. Circ Res 2007; 100: 1353-1362.
39. Hou N, Ye B, Li X, Margulies KB, Xu H, Wang X, et al. Transcription factor 7-like 2 mediates canonical Wnt/β-catenin signaling and c-Myc upregulation in heart failure. Circ Heart Fail 2016; 9: doi: 10.1161 /CIRCHEARTFAILURE.116.003010 e003010.
40. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog Neurobiol 2001; 65:391-426.
41. Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends in biochemical sciences 2010; 35: 161-168.  
42. Gao H, Sun B, Fu H, Chi X, Wang F, Qi X, et al. PDIA6 promotes the proliferation of HeLa cells through activating the Wnt/β-catenin signaling pathway. Oncotarget 2016; 7: 53289-53298.   
43. Arya M, Thrasivoulou C, Henrique R, Millar M, Hamblin R, Davda R,  et al. Targets of Wnt/ß-catenin transcription in penile carcinoma. PLoS One 2015; 10: e0124395.
Catenin Signaling and c-Myc Upregulation in Heart Failure. Circ Heart Fail  2016; 9: doi: 10.1161 /CIRCHEARTFAILURE.116.003010 e003010.
40. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog Neurobiol 2001; 65:391-426.
41.  Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends in biochemical sciences 2010; 35: 161-168. 
42. Gao H, Sun B, Fu H, Chi X, Wang F, Qi X, et al. PDIA6 promotes the proliferation of HeLa cells through activating the Wnt/β-catenin signaling pathway. Oncotarget 2016; 7: 53289-53298.  
43. Arya M, Thrasivoulou C, Henrique R, Millar M, Hamblin R, Davda R,  et al. Targets of Wnt/ß-catenin transcription in penile carcinoma. PLoS One 2015; 10: e0124395.