Correlation between antibiotic resistance and phylogenetic types among multidrug-resistant Escherichia coli isolated from urinary tract infections

Document Type : Original Article


1 Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan

2 Institute of Pure and Applied Biology, (Microbiology division) Bahauddin Zakariya University, Multan 60900, Pakistan

3 Department of Microbiology, PCSIR Laboratories Complex, Karachi 74000, Pakistan

4 Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan

5 Department of Biotechnology, University of Science & Technology Bannu, Pakistan.

6 Department of Zoology, The Islamia University of Bbahawalpur,61300, Bahawalpur, Pakistan

7 PCSIR Laboratories Islamabad, Pakistan


Objective(s): Emergence of multidrug resistance has reduced the choice of antimicrobial regimens for UTIs. To understand the association of phenotype and genotype among uropathogens.
Materials and Methods: Six hundred and twenty-eight (628) urine samples were collected and analyzed. Antibiotic sensitivity pattern was determined by the Kirby-Bauer Disc Diffusion Method and minimum inhibitory concentration (MIC) was tested by the E test. Fluoroquinolone resistant mutations in QRDR of gyrA and ParC, phylogenetic groups, and PAIusp subtype were detected by PCR.
Results: Most prevalent uropathogens were Escherichia coli (53.2%) followed by Klebsiella pneumoniae (21%). Multidrug- resistance was observed in > 50% cases for third-generation cephalosporins and ciprofloxacin and lowest in meropenem. E. coli (66.2%) and K. pneumonia (64.4%) were extended-spectrum β-lactamases (ESBLs) producers. MIC to trimethoprim-sulfamethoxazole was highest in E. coli (>1024 µg/ml). In 80 (24%) of the 334 E. coli isolates analyzed in detail, 54 fluoroquinolones (FQ) resistant isolates carried mutations (S83L, D87N, S80I, E84V) in QRDR of gyrA and ParC. Out of 54 FQ-resistant isolates, 43 (79.6%) isolates belonged to the phylogenetic group B2, and 11(20.4%) belonged to group D. Isolates belonged to group B2, 38 (88.4%) of the 43 isolates carried PAIusp subtype IIa and high frequency of mutation E84V in ParC was detected in 37 (97.4%). Other mutations, such as S80I, S83L in gyrA and D87N in ParC were found in all resistant isolates.
Conclusion: Correlations between phenotype and genotype provided a basis to understand the resistance development in uropathogens, and PAIusp subtyping indicated that E. coli belonged to the B2 group.


1. Dibua UM, Onyemerela IS, Nweze EI. Frequency, urinalysis and susceptibility profile of pathogens causing urinary tract infections in Enugu State, southeast Nigeria. Revista do Instituto de Medicina Tropical de São Paulo 2014; 56:55-59.
2. Mohammed MA, Alnour TM, Shakurfo OM, Aburass MM. Prevalence and antimicrobial resistance pattern of bacterial strains isolated from patients with urinary tract infection in Messalata Central Hospital, Libya. Asian Pac J Tro Med 2016. 9:771-776.
3. Bélanger L, Garenaux A, Harel J, Boulianne M, Nadeau E, Dozois CM. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic Escherichia coli. Fems Immunol Med Mic 2011; 162:1-10.
4. Rampure R, Gangane R, Oli AK, Chandrakanth K. Prevalence of MDR-ESBL producing Klebsiella pneumoniae isolated from clinical samples. J Microbiol Biotech Res 2013; 3:32-39.
5. Thakur S, Pokhrel N, Sharma M. Prevalence of multidrug-resistant Enterobacteriaceae and extended-spectrum β-lactamase producing Escherichia coli in urinary tract infection. Res J Pharm Biol Chem Sci 2013; 4:1615 -1624.
6. Kashef N, Djavid GE, Shahbazi S. Antimicrobial susceptibility patterns of community-acquired uropathogens in Tehran, Iran. J Infect Dev Ctries 2010; 204:202-206.
7. Emiru T, Beyene G, Tsegaye W, Melaku S. Associated risk factors of urinary tract infection among pregnant women at Felege Hiwot Referral Hospital, Bahir Dar, North West Ethiopia. BMC Res Notes 2013; 6:292-298.
8. Chiu CC, Lin TC, Wu RX, Yang YS, Hsiao PJ, Lee Y, Lin JC, Chang FY. Etiologies of community-onset urinary tract infections requiring hospitalization and antimicrobial susceptibilities of causative microorganisms. J Microbiol Immunol Infect 2017; 50:879-885.
9. Haque R, Akter ML, Salam MA. Prevalence and susceptibility of uropathogens: a recent report from a teaching hospital in Bangladesh. BMC Res Notes 2015; 8:416-421.
10. Chiu C. Definitions, classifications, and antibiotics. J U T I. 2013:  1-10.
11. Deuster S, Roten I, Muehlebach S. Implementation of treatment guidelines to support judicious use of antibiotic therapy. J Clin Pharm Ther 2010; 35:71-78.
12. Wagenlehner FM, Weidner W, Naber KG. An update on uncomplicated urinary tract infections in women. Curr Opin Urol 2009; 19:368-374.
13. Caterino JM, Weed SG, Espinola JA, Camargo, Jr CA. National trends in emergency department antibiotic prescribing for elders with urinary tract infection, 1996–2005. Acad Emerg Med 2009; 16:500-507.
14. Hopkins KL, Davies RH, Threlfall EJ. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Agents 2005; 25:358-373.
15. Cirz RT, Chin JK, Andes DR, de Crécy-Lagard V, Craig WA, Romesberg FE. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol 2005; 3:1023-1033.
16. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000; 66:4555-4558.
17. Kanamaru S, Kurazono H, Nakano M, Terai A, Ogawa O, Yamamoto S. Subtyping of uropathogenic Escherichia coli according to the pathogenicity island encoding uropathogenic‐specific protein: Comparison with phylogenetic groups. Int J Urol 2006; 13:754-760.
18. Shakya P, Shrestha D, Maharjan E, Sharma VK, Paudyal R. ESBL production among Escherichia coli and Klebsiella spp. causing urinary tract infection: a hospital-based study. Open Microbiol J 2017;11:23-30.
19. Ullah F, Malik S, Ahmed J. Antibiotic susceptibility pattern and ESBL prevalence in nosocomial Escherichia coli from urinary tract infections in Pakistan. Afr J Biotechnol 2009;8: 3921-3926.
20. Al-Zarouni M, Senok A, Rashid F, Al-Jesmi SM, Panigrahi D. Prevalence and antimicrobial susceptibility pattern of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the United Arab Emirates. Med Princ Pract 2008; 17:32-36.
21. Holt JG, Krieg NR, Sneath PH, Staley JT. Bergey’s manual of determinative bacteriology, 9th Edition, Williams and Wilkins., Baltimore, Maryland, USA; 1994.
22. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493-496.
23. CLSI: Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. In. 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA; 2013.
24. Jorgensen JH, McElmeel ML, Fulcher LC, Zimmer BL. Detection of CTX-M-type extended-spectrum β-lactamase (ESBLs) by testing with Micro Scan overnight and ESBL confirmation panels. J Clin Microbiol 2010; 48:120-123.
25. Lindgren PK, Karlsson Å, Hughes D. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolated from patients with urinary tract infections. Antimicrob Agents Chemother 2003; 47:3222-3232.
26. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ: Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13:269-284.
27. Saperston KN, Shapiro DJ, Hersh AL, Copp HL: A comparison of inpatient versus outpatient resistance patterns of pediatric urinary tract infection. J Urol 2014; 191:1608-1613.
28. Chikwendu CI, Amadi ES, Obi RK: Prevalence and antimicrobial resistance in Pseudomonas aeruginosa and Klebsiella pneumoniae isolates from non-clinical urine samples. N Y Sci J 2010; 3:1-4.
29. Yilmaz N, Agus N, Yurtsever SG, Pullukcu H, Gulay Z, Coskuner A, Kose S, Aydemir S, Gulenc N, Ozgenc O: Prevalence and antimicrobial susceptibility of Escherichia coli in outpatient urinary isolates in Izmir, Turkey. Medical Science Monitor: Int Med J Exp Clin Res 2009;15: I61-165.
30. Anjum F, Mir A: Susceptibility pattern of Pseudomonas aeruginosa against various antibiotics. Afr J Microbiol Res 2010; 4:1005-1012.
31. Magliano E, Grazioli V, Deflorio L, Leuci AI, Mattina R, Romano P, Cocuzza CE: Gender and age-dependent etiology of community-acquired urinary tract infections. Sci World J 2012; 349597: 1-6.
32. Marques LP, Flores JT, Barros Junior Ode O, Rodrigues GB, Mourao Cde M, Moreira RM. Epidemiological and clinical aspects of urinary tract infection in community-dwelling elderly women. Braz J Infect Dis 2012; 16:436-441.
33. Mekki AH, Hassan AN, Elsayed DE: Extended-spectrum beta-lactamases among multidrug-resistant Escherichia coli and Klebsiella species causing urinary tract infections in Khartoum. J Bacteriol Res 2010; 2:18-21.
34. Bhatt C, Shrestha B, Khadka S, Swar S, Shah B, Pun K: Etiology of urinary tract infection and drug resistance cases of uropathoges. J Kathmandu Med Coll 2012; 1:114-120.
35. Parajuli NP, Maharjan P, parajuli H, Joshi G, Paudel D, Sayami S, Khanal PR: High rates of multidrug resistance among uropathogenic Escherichia coli in children and analyses of ESBL producers from Nepal. Antimicrob Resist Infect Control 2017; 6:9-16.
36. Somily AM, Habib HA, Absar MM, Arshad MZ, Manneh K, Al Subaie SS, Al Hedaithy MA, Sayyed SB, Shakoor Z, Murray TS: ESBL-producing Escherichia coli and Klebsiella pneumoniae at a tertiary care hospital in Saudi Arabia. J Infect Dev Ctries 2014; 8:1129-1136.
37. Bhandari R, Pant ND, Poudel A, Sharma M: Assessment of the effectiveness of three different cephalosporin/clavulanate combinations for the phenotypic confirmation of extended-spectrum β-lactamase producing bacteria isolated from urine samples at National Public Health Laboratory, Kathmandu, Nepal. BMC Res Notes 2016; 9:390-395.
38. Kawamura-Sato K, Yoshida R, Shibayama K, Ohta M: Virulence genes, quinolone and fluoroquinolone resistance, and phylogenetic background of uropathogenic Escherichia coli isolates isolated in Japan. Jpn J Infect Dis 2010; 63:113-115.
39. Moreno E, Prats G, Sabate M, Perez T, Johnson JR, Andreu A: Quinolone, fluoroquinolone and trimethoprim/sulfamethoxazole resistance to virulence determinants and phylogenetic background among uropathogenic Escherichia coli. J Antimicrob Chemother 2006; 57:204-211.
40. Takahashi A, Muratani T, Yasuda M, Takahashi S, Monden K, Ishikawa K, Kiyota H, Arakawa S, Matsumoto T, Shima H, et al: Genetic profiles of fluoroquinolone-resistant Escherichia coli isolates obtained from patients with cystitis: phylogeny, virulence factors, PAIusp subtypes, and mutation patterns. J Clin Microbiol 2009; 47:791-795.
41. Khan SA, Feroz F, Noor R: Study of extended-spectrum β-lactamase-producing bacteria from urinary tract infections in Bangladesh. Tzu Chi Med J 2013; 25:39-42.
42. Williams CT, Musicha P, Feasey NA, Adams ER, Edwards T. ChloS-HRM, a novel assay to identify chloramphenicol-susceptible Escherichia coli and Klebsiella pneumoniae in Malawi. J Antimicrob Chemother 2019; 1212-1217.
43. Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis 2001; 7: 337-341.
44.Teklu DS, Negeri A A, Legese, M H, Bedada, T L, Woldemariam, H K, Tullu, KD. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob Resist Infect Control 2019; 8: 39-51.
45. Nazir H, Cao S, Hasan F, & Hughes D. Can phylogenetic type predict resistance development?. J Antimicrob Chemother 2011; 66: 778-787.
46. Hagel S, Makarewicz O, Hartung A, Weiß D, Stein C, Brandt C, & Pletz M W. ESBL colonization and acquisition in a hospital population: The molecular epidemiology and transmission of resistance genes. PLoS One 2019; 14: e0208505.
47. Bhandari R, Pant ND, Poudel A, & Sharma M. Assessment of the effectiveness of three different cephalosporin/clavulanate combinations for the phenotypic confirmation of extended-spectrum beta-lactamase producing bacteria isolated from urine samples at National Public Health Laboratory, Kathmandu, Nepal. BMC Res Notes 2016; 9: 390-395.
48. Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control 2017; 6:47-55.
49. Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand?. J  Med Microbiol  2017;66:551-559.
50. Nilsen E, Haldorsen BC, Sundsfjord A, Simonsen GS, Ingebretsen A, Naseer U, Samuelsen, Norwegian Study Group on Invasive Enterobacter. Large IncHI2-plasmids encode extended-spectrum β-lactamases (ESBLs) in Enterobacter spp. bloodstream isolates, and support ESBL-transfer to Escherichia coli. Clin Microbiol Infect . 2013 ;19:516-518.
51. Munkhdelger Y, Gunregjav N, Dorjpurev A, Juniichiro N, Sarantuya J. Detection of virulence genes, phylogenetic group, and antibiotic resistance of uropathogenic Escherichia coli in Mongolia. J Infect Dev Ctries 2017;11:51-57.