Modulatory role of atorvastatin against high-fat diet and zymosan-induced activation of TLR2/NF-ƙB signaling pathway in C57BL/6 mice

Document Type : Original Article

Authors

Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard (UGC approved deemed to be University, Govt. of India), New Delhi- 110062, India

10.22038/ijbms.2021.55460.12409

Abstract

Objective(s): Accumulated evidence provides a strong connection between the immune system and vascular inflammation. The innate immune system’s main sensors are toll-like receptors (TLRs). Zymosan (Zym), a fungal product, induces an inflammatory response via activating TLR2 of the immune system. Atorvastatin, a potent statin, possesses pleiotropic effects including immunomodulatory, lipid-lowering, and anti-inflammatory. Therefore, the current study aimed to evaluate the protective role of atorvastatin against a high-fat diet (HFD) and Zym-induced vascular inflammation in C57BL/6 mice via modulation of TLR2/NF-ƙB signaling pathway.
Materials and Methods: In silico study was conducted to confirm the binding affinity of atorvastatin against TLR2. Under in vivo study, mice were divided into four groups: Normal control: normal standard chow-diet fed for 30 days + Zym vehicle (sterile PBS, 5 mg/ml on 8th day); HFD (30 days) + Zym (80 mg/kg, IP, on 8th day); HFD/Zym + atorvastatin vehicle (0.5% CMC, p.o., from 10th to 30th day); HFD/Zym + atorvastatin (3.6 mg/kg, p.o., from 10th to 30th day).
Results: Atorvastatin treatment along with HFD and Zym inhibited vascular inflammation by suppressing the levels of aortic TLR2, cardiac NF-ƙB and decrease in serum TNF-α and IL-6. Further, there was an increase in hepatic LDLR levels, resulting in a decrease in serum LDL-C and an increase in HDL-C levels. Histopathological examination of the aorta showed a reduction in plaque accumulation with the atorvastatin-treated group as compared with HFD and Zym-treated group.
Conclusion: Atorvastatin attenuates vascular inflammation mediated by HFD and Zym through suppression of TLR2, NF-ƙB, TNF-α, IL-6, and upregulation of LDLR levels.

Keywords


1. Lavin Plaza B, Phinikaridou A, Andia ME, Potter M, Lorrio S, Rashid I, et al. Sustained focal vascular inflammation accelerates atherosclerosis in remote arteries. Arterioscler Thromb Vasc Biol 2020; 40: 2159-2170.
2. Madan M and Amar S. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: Proteomic findings. PloS One 2008; 3: e3204.
3. Hovland A, Jonasson L, Garred P, Yndestad A, Aukrust P, Lappegård KT, et al. The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis. Atherosclerosis 2015; 241: 480-494.
4. Cole JE, Georgiou E, Monaco C. The expression and functions of toll-like receptors in atherosclerosis. Mediators Inflamm 2010; 1-18.
5. Gaidhu MP, Anthony NM, Patel P, Hawke TJ, Ceddia RB. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: Role of ATGL, HSL, and AMPK. Am J Physiol Cell Physiol 2010; 298: C961-C971.
6. Han Q, Yeung SC, Ip MS, Mak JC. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model. Lipids Health Dis 2018; 17: 1-10.
7. Liu S, Zhang J, Pang Q, Song S, Miao R, Chen W, et al. The protective role of curcumin in zymosan-induced multiple organ dysfunction syndrome in mice. Shock  2016; 45: 209-219.
8. Malik P, Berisha SZ, Santore J, Agatisa-Boyle C, Brubaker G, Smith JD. Zymosan-mediated inflammation impairs in vivo reverse cholesterol transport. J Lipid Res 2011; 52: 951-957.
9. Underhill, DM, Macrophage recognition of zymosan particles. J Endotoxin Res 2003; 9: 176-180.
10. Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-κB activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J Immunol 2003; 171: 417-425.
11. Monaco C, Paleolog E. Nuclear factor κB: A potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc Res 2004; 61: 671-682.
12. Getz GS and Reardon CA. Animal models of atherosclerosis. Arterioscler Thromb Vasc Bio 2012; 32: 1104-1115.
13. Kumar S, Kang D-W, Rezvan A, Jo H. Accelerated atherosclerosis development in C57Bl6 mice by overexpressing AAV-mediated PCSK9 and partial carotid ligation. Lab Investig 2017; 97: 935-945.
14. Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun 2008; 374: 341-344.
15. Yuan Z, Liao Y, Tian G, Li H, Jia Y, Zhang H, et al. Panax notoginseng saponins inhibit Zymosan A induced atherosclerosis by suppressing integrin expression, FAK activation and NF-kappaB translocation. J Ethnopharmacol 2011; 138: 150-155.
16. Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res 2017; 120: 229-243.
17. Kavalipati N, Shah J, Ramakrishan A, Vasnawala H. Pleiotropic effects of statins. Indian J Endocrinol Metab 2015; 19: 554-562.
18. Peng S, Xu L-W, Che X-Y, Xiao Q-Q, Pu J, Shao Q, et al. Atorvastatin inhibits  inflammatory response, attenuates lipid deposition, and improves the stability of vulnerable atherosclerotic plaques by modulating autophagy. Front Pharmacol 2018; 9: 1-17.
19. Araújo FA, Rocha MA, Mendes JB, Andrade SP. Atorvastatin inhibits inflammatory angiogenesis in mice through down regulation of VEGF, TNF-α and TGF-β1. Biomed Pharmacother 2010; 64: 29-34.
20. Bruder-Nascimento T, Callera GE, Montezano AC, de Chantemele EJ, Tostes RC, Touyz RM. Atorvastatin inhibits pro-inflammatory actions of aldosterone in vascular smooth muscle cells by reducing oxidative stress. Life Sci 2019; 221: 29-34.
21. Koushki K, Shahbaz SK, Mashayekhi K, Sadeghi M, Zayeri ZD, Taba MY, et al. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways. Clin Rev Allergy Immunol 2021; 60: 175-199.
22. Satoh M, Takahashi Y, Tabuchi T, Tamada M, Takahashi K, Itoh T, et al. Circulating toll-like receptor 4-responsive microRNA panel in patients with coronary artery disease: results from prospective and randomized study of treatment with renin–angiotensin system blockade. Clin Sci 2015; 128: 483–491
23. Moutzouri E, Tellis CC, Rousouli K, Liberopoulos EN, Milionis HJ, Elisaf MS, et al. Effect of simvastatin or its combination with ezetimibe on Toll-like receptor expression and lipopolysaccharide–induced cytokine production in monocytes of hypercholesterolemic patients. Atherosclerosis 2012; 225: 381-387.
24. Földes G, von Haehling S, Okonko DO, Jankowska EA, Poole-Wilson PA, Anker SD. Fluvastatin reduces increased blood monocyte Toll-like receptor 4 expression in whole blood from patients with chronic heart failure. Inter J Cardiol 2008; 124: 80-85.
25. Kapelouzou A, Giaglis S, Peroulis M, Katsimpoulas M, Moustardas P, Aravanis CV, et al. Overexpression of toll-like receptors 2, 3, 4, and 8 is correlated to the vascular atherosclerotic process in the hyperlipidemic rabbit model: the effect of statin treatment. J Vasc Res 2017; 54: 156-169.
26. Methe H, Kim JO, Kofler S, Nabauer M, Weis M. Statins decrease Toll-like receptor 4 expression and downstream signaling in human CD14+ monocytes. Arterioscler Thromb Vasc Biol 2005; 25: 1439-1445.
27. Sasidharan SR, Joseph JA, Anandakumar S, Venkatesan V, Ariyattu Madhavan CN, Agarwal A. An experimental approach for selecting appropriate rodent diets for research studies on metabolic disorders. Biomed Res 2013; 2013;1-9.
28. Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 2009; 31: 873-884.
29. Kühnast S, van der Hoorn JW, Pieterman EJ, van den Hoek AM, Sasiela WJ, Gusarova V, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res 2014; 55: 2103-2112.
30. Bhandari U, Kumar V, Khanna N, Panda BP. The effect of high-fat diet-induced obesity on cardiovascular toxicity in Wistar albino rats. Hum Exp Toxicol 2011; 30: 1313-1321.
31. Demacker PN, Hijmans AG, Vos-Janssen HE, Van’t Laar A, Jansen AP. A study of the use of polyethylene glycol in estimating cholesterol in high-density lipoprotein. Clin Chem 1980; 26: 1775-1779.
32. Foster LB and Dunn RT. Stable reagents for determination of serum triglycerides by a colorimetric Hantzsch condensation method. Clin Chem 1973; 19: 338-340.
33. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499-502.
34. Kazemi T, Hajihosseini M, Moossavi M, Hemmati M, Ziaee M. Cardiovascular risk factors and Atherogenic indices in an Iranian population: Birjand east of Iran. Clin Med Insights Cardiol 2018; 12: 1-6.
35. Boehmer ED, Meehan MJ, Cutro BT, Kovacs EJ. Aging negatively skews macrophage TLR2-and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway. Mech Ageing Dev 2005; 12: 1305-1313.
36. Pushpan CK, Shalini V, Sindhu G, Rathnam P, Jayalekshmy A, Helen A. Attenuation of atherosclerotic complications by modulating inflammatory responses in hypercholesterolemic rats with dietary Njavara rice bran oil. Biomed Pharmacother 2016; 83: 1387-1397.
37. May K, Kraemer F, Chen J, Cooper A. ELISA measurement of LDL receptors. J lipid Res 1990; 31: 1683-1691.
38. Naiki Y, Sorrentino R, Wong MH, Michelsen KS, Shimada K, Chen S, et al. TLR/MyD88 and liver X receptor α signaling pathways reciprocally control Chlamydia pneumoniae-induced acceleration of atherosclerosis. J Immunol 2008; 181: 7176-7185.
39. Nguyen DH, Zhou T, Shu J, Mao J. Quantifying chromogen intensity in immunohistochemistry via reciprocal intensity. Cancer InCytes 2013;  2: 1-4.
40. Bhat OM, Kumar PU, Giridharan NV, Kaul D, Kumar MM, Dhawan V. Interleukin-18- induced atherosclerosis involves CD36 and NF-κB crosstalk in Apo E−/− mice. J Cardiol 2015; 66: 28-35.
41. Kajava AV, Vasselon T. A network of hydrogen bonds on the surface of TLR2 controls ligand positioning and cell signaling. J Biol Chem 2010; 285: 6227-6234.
42. Balasubramanian PK, Kim J, Son K, Durai P, Kim Y. 3, 6‐Dihydroxyflavone: A Potent Inhibitor with Anti‐Inflammatory Activity Targeting Toll‐like Receptor 2. Bull Korean Chem Soc 2019; 40: 51-55.
43. Koymans KJ, Feitsma LJ, Bisschop A, Huizinga EG, van Strijp JA, de Haas CJ, et al. Molecular basis determining species specificity for TLR2 inhibition by staphylococcal superantigen-like protein 3 (SSL3). Vet Res 2018; 49: 1-5.
44. Zhang YG, Zhang HG, Zhang GY, Fan JS, Li XH, Liu YH, et al. Panax notoginseng saponins attenuate atherosclerosis in rats by regulating the blood lipid profile and an anti‐inflammatory action. Clin Exp Pharmacol Physiol 2008; 35: 1238-1244.
45. Shen P, Li W, Wang Y, He X, He L. Binding mode of chitin and TLR2 via molecular docking and dynamics simulation. Mol Simulat 2016; 42: 936-941.
46. Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like   receptor 2. J Clin Invest 2005; 115: 3149-3156.
47. Olejarz W, Łacheta D, Głuszko A, Migacz E, Kukwa W, Szczepański MJ, et al. RAGE and TLRs as key targets for antiatherosclerotic therapy. BioMed Res Int 2018; 2018:1-10.
48. Curtiss LK, Tobias PS. Emerging role of Toll-like receptors in atherosclerosis. J lipid Res 2009; 50(Supplement): S340-S345.
49. Schoneveld AH, Hoefer I, Sluijter JP, Laman JD, de Kleijn DP, Pasterkamp G. Atherosclerotic lesion development and Toll like receptor 2 and 4 responsiveness. Atherosclerosis 2008; 197: 95-104.
50. Higashimori M, Tatro JB, Moore KJ, Mendelsohn ME, Galper JB, Beasley D. Role of toll- like receptor 4 in intimal foam cell accumulation in apolipoprotein E–deficient mice. Arterioscler Thromb Vasc Biol 2011; 31: 50-57.
51. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct and Target Ther 2017; 2: 1-9.
52. Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab 2011; 13: 11-22.
53. Sahar S, Dwarakanath RS, Reddy MA, Lanting L, Todorov I, Natarajan R. Angiotensin II  enhances interleukin-18 mediated inflammatory gene expression in vascular smooth muscle cells: a novel cross-talk in the pathogenesis of atherosclerosis. Circ Res 2005; 96: 1064-1071.
54. Bhaskar S, Sudhakaran PR and Helen A. Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway. Cell Immunol 2016; 310: 131-140.
55. Han F, Xiao QQ, Peng S, Che XY, Jiang LS, Shao Q, et al. Atorvastatin ameliorates LPS‐induced inflammatory response by autophagy via AKT/mTOR signaling pathway. J Cell Biochem 2018; 119: 1604-1615.
56. Pun NT, Subedi A, Kim MJ, Park P-H. Globular adiponectin causes tolerance to LPS-induced TNF-α expression via autophagy induction in RAW 264.7 macrophages:  involvement of SIRT1/FoxO3A axis. PLoS One 2015; 10: e0124636.
57. Catapano AL, Pirillo A, Norata GD. Vascular inflammation and low‐density lipoproteins: Is  cholesterol the link? A lesson from the clinical trials. Br J Pharmacol 2017; 174: 3973-3985.
58. Ruan XZ, Moorhead JF, Tao JL, Ma KL, Wheeler DC, Powis SH, et al. Mechanisms of dysregulation of low-density lipoprotein receptor expression in vascular smooth muscle cells by inflammatory cytokines. Arterioscler Thromb Vasc Biol 2006; 26: 1150-1155.
59. Zhang Y, Ma KL, Ruan XZ, Liu BC. Dysregulation of the low-density lipoprotein receptor pathway is involved in lipid disorder-mediated organ injury. Int J Biol Sci 2016; 12: 569-579.