Mastoparan M extracted from Vespa magnifica alleviates neuronal death in global cerebral ischemia-reperfusion rat model

Document Type : Original Article

Authors

1 Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, China

2 National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China

3 Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali University, Dali 671000, Yunnan, China

Abstract

Objective(s): Global cerebral ischemia (GCI), a consequence of cardiac arrest (CA), can significantly damage the neurons located in the vulnerable hippocampus CA1 areas. Clinically, neurological injury after CA contributes to death in most patients. Mastoparan-M extracted from Vespa magnifica (Smith) can be used to treat major neurological disorders. Hence, this study aimed to assess the effects of Mastoparan-M on GCI. 
Materials and Methods: To evaluate the neurotoxicity and neuroprotective effect of Mastoparan-M, the CCK8 and Annexin V-FITC/PI apoptosis assays were first performed in hippocampal HT22 neuronal cells in vitro. Then, Pulsinelli’s 4-vascular occlusion model was constructed in rats. After treatment with Mastoparan-M (0.05, 0.1, and 0.2 mg/kg, IP) for 3 or 7 days, behavioral tests, H&E staining or Nissl staining, immunohistochemistry, and ELISA were employed to investigate neuroprotective effects of Mastoparan-M on GCI in rats.
Results: In vitro, the growth of HT22 neuronal cells was restrained at concentrations of 30-300 µg/ml (at 24 hr, IC50=105.2 µg/ml; at 48 hr, IC50=46.81 µg/ml), and Mastoparan-M treatment (0.1,1 and 5 µg/ml) restrained apoptosis. In vivo, Mastoparan-M improved neurocognitive function and neuronal loss in the hippocampal CA1 area of rats. In addition, these effects were associated with the prevention of neuroinflammation, oxidative stress, and apoptosis. 
Conclusion: Mastoparan-M acts as a neuroprotective agent to alleviate neuronal death in rats.

Keywords


1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2015 update a report from the American Heart Association. Circulation 2015; 131:E29-E322.
2. Vereczki V, Martin E, Rosenthal RE, Hof PR, Hoffman GE, Fiskum G. Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J Cereb Blood Flow Metab 2006; 26:821-835.
3. Zhang QG, Han D, Wang RM, Dong Y, Yang F, Vadlamudi RK, et al. C terminus of Hsc70-interacting protein (CHIP)-mediated degradation of hippocampal estrogen receptor-alpha and the critical period hypothesis of estrogen neuroprotection. Proc Natl Acad Sci 2011; 108:E617-624.
4. Safar P. Cerebral resuscitation after cardiac arrest: A review. Circulation 1986; 74:IV138-153.
5. Harukuni I and Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia. Neurol Clin 2006; 24:1-21.
6. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79:1431-1568.
7. Pucci S, Ciccarelli F, De Pasquale T, Illuminati I, and D‘Alo S. Depot extracts for rush venom immunotherapy A new therapeutic opportunity for Hymenoptera sting allergy. Ann Allerg Asthma Im 2018; 121:376-377.
8. Nittner-Marszalska M, Kowal A, Szewczyk P, Guranski K, Ejma M. Wasp venom immunotherapy in a patient with immune-mediated inflammatory central nervous system disease: is it safe? J Invest Allerg Clin 2017; 27:127-129.
9. Mortari MR, Cunha AO, de Oliveira L, Vieira EB, Gelfuso EA, Coutinho-Netto J, et al. Anticonvulsant and behavioural effects of the denatured venom of the social wasp Polybia occidentalis (Polistinae, Vespidae). Basic Clin Pharmacol Toxicol 2005; 97:289-295.
10. Khalil WK, Assaf N, ElShebiney SA, and Salem NA. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis. Neurochem Int 2015; 80:79-86.
11. Alvarez-Fischer D, Noelker C, Vulinovic F, Grunewald A, Chevarin C, Klein C, et al. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model. PLoS One 2013; 8.
12. Kim ME, Lee JY, Lee KM, Park HR, Lee E, Lee Y, et al. Neuroprotective effect of bee venom is mediated by reduced astrocyte activation in a subchronic MPTP-induced model of Parkinson‘s disease. Arch Pharm Res 2016; 39:1160-1170.
13. Thathiah A and De Strooper B. The role of G protein-coupled receptors in the pathology of Alzheimer‘s disease. Nat Rev Neurosci 2011; 12:73-87.
14. Yasuhara T, Mantel P, Nakajima T, Piek T. Two kinins isolated from an extract of the venom reservoirs of the solitary wasp Megascolia flavifrons. Toxicon 1987; 25:527-535.
15. Piek T, Hue B, Mantel P, Nakajima T, Pelhate M, Yasuhara T. Threonine6-bradykinin in the venom of the wasp Colpa interrupta (F.) presynaptically blocks nicotinic synaptic transmission in the insect CNS. Comp Biochem Physiol C 1990; 96:157-162.
16. Cabrera MPD, de Souza BM, Fontana R, Konno K, Palma MS, de Azevedo WF, et al. Conformation and lytic activity of eumenine mastoparan: a new antimicrobial peptide from wasp venom. J Pept Res 2004; 64:95-103.
17. Konno K, Hisada M, Naoki H, Itagaki Y, Kawai N, Miwa A, et al. Structure and biological activities of eumenine mastoparan-AF (EMP-AF), a new mast cell degranulating peptide in the venom of the solitary wasp (Anterhynchium flavomarginatum micado). Toxicon 2000; 38:1505-1515.
18. van der Wel P, Fanghänel S, Wadhwani P, Strandberg E, Verdurmen WPR, Bürck J, et al. Structure analysis and conformational transitions of the cell penetrating peptide transportan 10 in the membrane-bound state. PLoS One 2014; 9.
19. Danielisova V, Gottlieb M, Nemethova M, and Burda J. Effects of bradykinin postconditioning on endogenous antioxidant enzyme activity after transient forebrain ischemia in rat. Neurochem Res 2008; 33:1057-1064.
20. Danielisova V, Gottlieb M, Nemethova M, Kravcukova P, Domorakova I, Mechirova E, et al. Bradykinin postconditioning protects pyramidal CA1 neurons against delayed neuronal death in rat hippocampus. Cell Mol Neurobiol 2009; 29:871-878.
21. Noda M, Kariura Y, Pannasch U, Nishikawa K, Wang L, Seike T, et al. Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. J Neurochem 2007; 101:397-410.
22. Gao Y, Yu WX, Duan XM, Ni LL, Liu H, Zhao HR, et al. Wasp venom possesses potential therapeutic effect in experimental models of rheumatoid arthritis. Evid Based Complement Alternat Med 2020; 2020:1-10.
23. Zhou ST, Luan K, Ni LL, Wang Y, Yuan SM, Che YH, et al. A strategy for quality control of vespa magnifica (Smith) venom based on HPLC fingerprint analysis and multi-component separation combined with quantitative analysis. Molecules 2019; 24.
24. Zhang P, Ray R, Singh BR, Ray P. Mastoparan-7 rescues botulinum toxin-A poisoned neurons in a mouse spinal cord cell culture model. Toxicon 2013; 76:37-43.
25. Ji B, Cheng B, Pan Y, Wang C, Chen J, Bai B. Neuroprotection of bradykinin/bradykinin B2 receptor system in cerebral ischemia. Biomed Pharmacother 2017; 94:1057-1063.
26. Torres-Rivera W, Perez D, Park KY, Carrasco M, Platt MO, Eterovic VA, et al. Kinin-B2 receptor exerted neuroprotection after diisopropylfluorophosphate-induced neuronal damage. Neuroscience 2013; 247:273-279.
27. Pulsinelli WA and Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 1979; 10:267-272.
28. Pulsinelli WA and Duffy TE. Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 1983; 40:1500-1503.
29. Gale K, Kerasidis H, Wrathall JR. Spinal-cord contusion in the rat-behavioral-analysis of functional neurologic impairment. Exp Neurol 1985; 88:123-134.
30. Bakhit C, Armanini M, Wong WLT, Bennett GL, Wrathall JR. Increase in nerve growth factor-like immunoreactivity and decrease in choline-acetyltransferase following contusive spinal-cord injury. Brain Res 1991; 554:264-271.
31. Naseem I, Hassan I, Alhazza IM, Chibber S. Protective effect of riboflavin on cisplatin induced toxicities: a gender-dependent study. J Trace Elem Med Biol 2015; 29:303-314.
32. Ahmed Abdel-Reheim M, Messiha BAS, Abo-Saif AA. Quillaja saponaria bark saponin protects Wistar rats against ferrous sulphate-induced oxidative and inflammatory liver damage. Pharm Biol 2017; 55:1972-1983.
33. Yang EJ, Jiang JH, Lee SM, Yang SC, Hwang HS, Lee MS, et al. Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J Neuroinflammation 2010; 7:69-80.
34. Cai M, Choi SM, Yang EJ. The effects of bee venom acupuncture on the central nervous system and muscle in an animal hSOD1G93A mutant. Toxins (Basel) 2015; 7:846-858.
35. Doo AR, Kim SN, Kim ST, Park JY, Chung SH, Choe BY, Chae Y, Lee H, Yin CS, Park HJ. Bee venom protects SH-SY5Y human neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death. Brain Res 2012 ; 6:106-115.
36. Pooga M, Hallbrink M, Zorko M, Langel U. Cell penetration by transportan. FASEB J 1998; 12:67-77.
37. Moreno M and Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins (Basel) 2015; 7:1126-1150.
38. Kim MJ, Cho JH, Cho JH, Park JH, Ahn JH, Tae HJ, et al. Impact of hyperthermia before and during ischemia-reperfusion on neuronal damage and gliosis in the gerbil hippocampus induced by transient cerebral ischemia. J Neurol Sci 2015; 348:101-110.
39. Lee JC, Chen BH, Cho JH, Kim IH, Ahn JH, Park JH, et al. Changes in the expression of DNA-binding/differentiation protein inhibitors in neurons and glial cells of the gerbil hippocampus following transient global cerebral ischemia. Mol Med Rep 2015; 11:2477-2485.
40. Petito CK and Pulsinelli WA. Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes. J Cereb Blood Flow Metab 1984; 4:194-205.
41. Yamamoto K, Morimoto K, and Yanagihara T. Cerebral ischemia in the gerbil: transmission electron microscopic and immunoelectron microscopic investigation. Brain Res 1986; 384:1-10.
42. Schmidt-Kastner R and Freund TF. Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 1991; 40:599-636.
43. Desposito D, Zadigue G, Taveau C, Adam C, Alhenc-Gelas F, Bouby N, et al. Neuroprotective effect of kinin B1 receptor activation in acute cerebral ischemia in diabetic mice. Sci Rep 2017; 7:9410.
44. Karimi A, Ahmadi F, Parivar K, Nabiuni M, Haghighi S, Imani S, et al. Effect of honey bee venom on lewis rats with experimental allergic encephalomyelitis, a model for multiple sclerosis. Iran J Pharm Res 2012; 11:671-678.
45. Han SM, Kim JM, Park KK, Chang YC, Pak SC. Neuroprotective effects of melittin on hydrogen peroxide-induced apoptotic cell death in neuroblastoma SH-SY5Y cells. BMC Complement Altern Med 2014; 14:286-303.
46. Doll DN, Barr TL, Simpkins JW. Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis 2014; 5:294-306.
47. Shah IM, Macrae IM, Di Napoli M. Neuroinflammation and neuroprotective strategies in acute ischaemic stroke - from bench to bedside. Curr Mol Med 2009; 9:336-354.
48. Han HS and Yenari MA. Cellular targets of brain inflammation in stroke. Curr Opin Investig Drugs 2003; 4:522-529.
49. Maramattom BV and Wijdicks EF. Postresuscitation encephalopathy. Current views, management, and prognostication. Neurologist 2005; 11:234-243.
50. Wang W, Wang Q, Yu W, Chen L, Li Z. Efficacy of phosphocreatine pre-administration on XIAP and Smac in ischemic penumbra of rats with focal cerebral ischemia reperfusion injury. Acta Cir Bras 2018; 33:117-124.
51. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 2001; 21:2-14.
52. Srivastava K, Bath PMW, Bayraktutan U. Current therapeutic strategies to mitigate the eNOS dysfunction in ischaemic stroke. Cell Mol Neurobiol 2012; 32:319-336.
53. Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: Recent Advances. Pharmacol Rev 2009; 61:62-97.
54. Arai K, Jin G, Navaratna D, Lo EH. Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J 2009; 276:4644-4652.
55. Zhang ZG, Zhang L, Tsang W, Soltanian-Zadeh H, Morris D, Zhang R, et al. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab 2002; 22:379-392.