Metabolite profiling and nephroprotective potential of Glycyrrhiza glabra L. roots against cisplatin-induced nephrotoxicity in vitro and in vivo

Document Type : Original Article


1 Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Jamia Hamdard, New Delhi, India-110062

2 Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062

3 Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062

4 Department of Food Technology, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi, India-110062

5 Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062


Objective(s): The present study was conducted to investigate the phytochemical analysis and demonstrate the nephroprotective potential of root extract of Glycyrrhiza glabra L. against cisplatin (CP) -induced nephrotoxicity in vitro and in vivo. 
Materials and Methods: The HPTLC analysis and UPLC-MS were carried out for standardizing and metabolite profiling of methanolic extract of roots of G. glabra (GGE). Further, in vitro studies were conducted in human embryonic kidney (HEK)-293 cells to evaluate the cytotoxicity and anti-oxidant potential of GGE with CP as a toxicant and ascorbic acid as standard. Also, in vivo nephroprotective potential at doses of 31.5, 63, and 126 mg/kg/day on CP (6 mg/kg, bw, IP) induced nephrotoxicity was evaluated on rodents. 
Results: Phytochemical analysis by HPTLC and UPLC-MS revealed the presence of glycyrrhizin, glabridin, and liquiritin along with other bioactive constituents. The in vitro assay of GGE showed significant (P<0.001 nephroprotective, cellular anti-oxidant potential and improvement in morphological changes induced by CP. Further, administration of CP caused significant (P<0.001) elevation in biochemical, inflammatory, oxidative stress, caspase-3, as well as histopathological changes in kidney tissue. Pre-treatment with GGE attenuated the elevated biochemical markers significantly, improved histopathological damage, and showed a comparable result to ascorbic acid and α-ketoanalogue. 
Conclusion: Present study concluded the nephroprotective potential of GGE which supports the traditional claim of G. glabra roots in various kidney and its related disorders. The nephroprotective activity may be attributed to its anti-oxidant, anti-inflammatory, and anti-apoptosis effects. Thus, it holds promising potential in management of nephrotoxicity. 


1. Bone K, Mills S. Principles and practice of phytotherapy: Modern Herbal Medicine. Principles and Practice of Phytotherapy: 2st ed. 2012; 719-740.
2. Tohma HS, Gulçin I. Anti-oxidant and radical scavenging activity of aerial parts and roots of turkish liquorice (Glycyrrhiza glabra L.). Int J Food Prop 2010; 13: 657-671.
3. Husain I, Bala K, Khan IA, Khan SI.  A review on phytochemicals, pharmacological activities, drug interactions, and associated toxicities of licorice ( Glycyrrhiza sp.) . Food Front 2021; 2:449-485.
4. Davis EA, Morris DJ. Medicinal uses of licorice through the millennia: The good and plenty of it. Mol Cell Endocrinol 1991; 78:1-6. 
5. Biondi DM, Rocco C, Ruberto G. Dihydrostilbene derivatives from Glycyrrhiza glabra leaves. J Nat Prod 2005; 68:1099-1102.
6. Mamedov NA, Egamberdieva D. Phytochemical constituents and pharmacological effects of licorice: A review. In: Plant and Human Health: Pharmacology and Therapeutic Uses. 2019; 3:1-21.
7. Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBPP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res 2018; 32:2323-2339.
8. Müller T, Dewitz C, Schmitz J, Schröder AS, Bräsen JH, Stockwell BR, et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci 2017; 74:3631-3645. 
9. Saylor C, Tamayo-Ortiz M, Pantic I, Amarasiriwardena C, McRae N, Estrada-Gutierrez G, et al. Prenatal blood lead levels and reduced preadolescent glomerular filtration rate: Modification by body mass index. Environ Int 2021; 154:106414-106433. 
10. Fang C yan, Lou D yong, Zhou L qin, Wang J cheng, Yang B, He Q jun, et al. Natural products: Potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin 2021; 42:1951-1969. 
11. Zangeneh MM, Zangeneh A, Tahvilian R, Moradi R. Evaluation of the nephroprotective effect of Glycyrrhiza glabra L. aqueous extract on CCl4-induced nephrotoxicity in mice. Comp Clin Path 2018; 27:1119–1126.  
12. Chauhan P, Sharma H, Kumar U, Mayachari A, Sangli G, Singh S. Protective effects of Glycyrrhiza glabra supplementation against methotrexate-induced hepato-renal damage in rats: An experimental approach. J Ethnopharmacol 2020; 263:113209-113220.
13. Man Q, Deng Y, Li P, Ma J, Yang Z, Yang X, et al. Licorice ameliorates cisplatin-induced hepatotoxicity through antiapoptosis, anti-oxidative stress, anti-Inflammation, and acceleration of metabolism. Front Pharmacol 2020; 11:563750-563765.
14. Nassan MA, Soliman MM, Aldhahrani A, Althobaiti F, Alkhedaide AQ. Ameliorative impacts of Glycyrrhiza glabra root extract against nephrotoxicity induced by gentamicin in mice. Food Sci Nutr 2021; 9:3405-3413.  
15. Tarish RJ. Nephroprotective roles of local licorice, peppermint extracts and their mixture on gentamicin-induced renal insufficiency in wistar albino rats. Al-Qadisiyah J Vet Med Sci 2017; 16:1-8.
16. Khan MU, Gaurav, Zahiruddin S, Basist P, Krishnan A, Parveen R, et al. Nephroprotective potential of Sharbat-e-Bazoori Motadil (sugar-free) in HEK-293 cells and wistar rats against cisplatin induced nephrotoxicity. J King Saud Univ Sci 2022; 34:101839-101849. 
17. Gülçin I, Topal F, Sarikaya SBÖ, Bursal E, Bilsel G, Gören AC. Polyphenol contents and anti-oxidant properties of medlar (Mespilus germanica L.). Rec Nat Prod 2011; 5:158-175.
18. Köksal E, Bursal E, Gülçin İ, Korkmaz M, Çağlayan C, Gören AC, et al. Anti-oxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. Int J Food Prop 2017; 20:514-525. 
19. Gülçin I, Mshvildadze V, Gepdiremen A, Elias R. The anti-oxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(β-D-glucopyranosyl)-hederagenin. Phyther Res 2006; 20:130-134. 
20. Topal M, Gocer H, Topal F, Kalin P, Köse LP, Gulçin I, et al. Anti-oxidant, antiradical, and anticholinergic properties of cynarin purified from the Illyrian thistle (Onopordum illyricum L.). J Enzyme Inhib Med Chem 2016; 31:266-275. 
21. Oyaizu M. Studies on products of browning reaction. Anti-oxidative activities of products of browning reaction prepared from glucosamine. Japanese J Nutr Diet 1986; 44:307–315. 
22. Aliyu AB, Ibrahim MA, Musa AM, Musa AO, Kiplimo JJ, Oyewale AO. Free radical scavenging and total anti-oxidant capacity of root extracts of anchomanes difformis Engl. (ARACEAE). Acta Pol Pharm 2013; 70:115-121. 
23. Khan A, Zahiruddin S, Ibrahim M, Basist P, Gaurav, Parveen R, et al. Thin layer chromatography-mass spectrometry bioautographic identification of free radical scavenging compounds and metabolomic profile of carica papaya linn. fruit and seeds using high-performance thin-layer chromatography, gas chromatography-mass spectro. Pharmacogn Mag 2021; 17:21-28. 
24. Neelima S, Dwarakanadha Reddy P, Kothapalli Bannoth CS. Nephroprotective activity of annona squamosa leaves against paracetamol-induced nephrotoxicity in rats: In vitro and in vivo experiments. Futur J Pharm Sci 2020; 6:131-139. 
25. Singh MP, Chauhan AK, Kang SC. Morin hydrate ameliorates cisplatin-induced ER stress, inflammation and autophagy in HEK-293 cells and mice kidney via PARP-1 regulation. Int Immunopharmacol 2018; 56:156-167. 
26. Grauzdytė D, Pukalskas A, Viranaicken W, Kalamouni C El, Venskutonis PR. Protective effects of Phyllanthus phillyreifolius extracts against hydrogen peroxide induced oxidative stress in HEK293 cells. PLoS One 2018; 13:1–15. 
27. Kpemissi M, Eklu-Gadegbeku K, Veerapur VP, Negru M, Taulescu M, Chandramohan V, et al. Nephroprotective activity of Combretum micranthum G. don in cisplatin induced nephrotoxicity in rats: In-vitro, in-vivo and in-silico experiments. Biomed Pharmacother 2019; 116:108961-108975. 
28. Eslamifar Z, Moridnia A, Sabbagh S, Ghaffaripour R, Jafaripour L, Behzadifard M. Ameliorative effects of gallic acid on cisplatin-induced nephrotoxicity in rat variations of biochemistry, histopathology, and gene expression. Biomed Res Int 2021; 2021:2195238-2195249. 
29. Iqbal MO, Sial AS, Akhtar I, Naeem M, Hazafa A, Ansari RA, et al. The nephroprotective effects of Daucus carota and Eclipta prostrata against cisplatin-induced nephrotoxicity in rats. Bioengineered 2021; 12:12702–12721. 
30. Kpemissi M, Potârniche AV, Lawson-Evi P, Metowogo K, Melila M, Dramane P, et al. Nephroprotective effect of Combretum micranthum G. don in nicotinamide-streptozotocin induced diabetic nephropathy in rats: In-vivo and in-silico experiments. J Ethnopharmacol 2020; 261:113133-113146. 
31. S JP, Evan Prince S. Diclofenac-induced renal toxicity in female wistar albino rats is protected by the pre-treatment of aqueous leaves extract of Madhuca longifolia through suppression of inflammation, oxidative stress and cytokine formation. Biomed Pharmacother 2018; 98:45-51. 
32. Ravindra P, Bhiwgade DA, Kulkarni S, Rataboli P V, Dhume CY. Cisplatin induced histological changes in renal tissue of rat. J Cell Anim Biol 2010; 4:108-111. 
33. Farag MA, Porzel A, Wessjohann LA. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques. Phytochemistry 2012; 76:60-72. 
34. Rahman H, Khan I, Hussain A, Shahat AA, Tawab A, Qasim M, et al. Glycyrrhiza glabra HPLC fractions: Identification of aldehydo isoophiopogonone and liquirtigenin having activity against multidrug resistant bacteria. BMC Complement Altern Med 2018; 18:140-146. 
35. Tian M, Yan H, Row KH. Simultaneous extraction and separation of liquiritin, glycyrrhizic acid, and glabridin from licorice root with analytical and preparative chromatography. Biotechnol Bioprocess Eng 2008; 3:671-676. 
36. Frattaruolo L, Carullo G, Brindisi M, Mazzotta S, Bellissimo L, Rago V, et al. Anti-oxidant and anti-inflammatory activities of flavanones from glycyrrhiza glabra L. (licorice) leaf phytocomplexes: Identification of licoflavanone as a modulator of NF-kB/MAPK pathway. Anti-oxidants 2019; 8:186-201. 
37. Zhou J-X, Braun M, Wetterauer P, Wetterauer B, Wink M. Anti-oxidant, cytotoxic, and antimicrobial activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. Extracts. Medicines 2019; 6:43-59. 
38. Tyagi P, Sharma SK, Kumar P. Evaluation of antihyperlipidemic activity of ethanolic root extract of Glycyrrhiza glabra Linn. J Drug Deliv Ther 2018; 8:120-124. 
39. Karthikkeyan G, Pervaje R, Pervaje SK, Prasad TSK, Modi PK. Prevention of MEK-ERK-1/2 hyper-activation underlines the neuroprotective effect of Glycyrrhiza glabra L. (Yashtimadhu) against rotenone-induced cellular and molecular aberrations. J Ethnopharmacol 2021; 274:114025-114036. 
40. Moradi A, Abolfathi M, Javadian M, Heidarian E, Roshanmehr H, Khaledi M, et al. Gallic acid exerts nephroprotective, anti-oxidative stress, and anti-inflammatory effects against diclofenac-induced renal injury in malerats. Arch Med Res 2021; 52:380-388. 
41. Mukherjee PK, Bahadur S, Chaudhary SK, Kar A, Mukherjee K. Quality Related Safety Issue-evidence-based Validation of Herbal Medicine Farm to Pharma. In: Evidence-Based Validation of Herbal Medicine. 2015; 1-28.
42. Sharifi-Rad J, Quispe C, Herrera-Bravo J, Belén LH, Kaur R, Kregiel D, et al. Glycyrrhiza genus: Enlightening phytochemical components for pharmacological and health-promoting abilities. Oxid Med Cell Longev 2021; 2021:7571132-7571152. 
43. Graebin CS. The Pharmacological Activities of Glycyrrhizinic Acid (“Glycyrrhizin”) and Glycyrrhetinic Acid. In: Reference Series in Phytochemistry. 2018; 245-261.
44. Wu CH, Chen AZ, Yen GC. Protective effects of glycyrrhizic acid and 18β-glycyrrhetinic acid against cisplatin-induced nephrotoxicity in BALB/c mice. J Agric Food Chem 2015; 63:1200-1209. 
45. Yin X, Gong X, Zhang L, Jiang R, Kuang G, Wang B, et al. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in D-galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M. Toxicol Appl Pharmacol 2017; 320:8-16. 
46. Simmler C, Pauli GF, Chen SN. Phytochemistry and biological properties of glabridin. Fitoterapia 2013; 90:160-184. 
47. Yu JY, Ha JY, Kim KM, Jung YS, Jung JC, Oh S. Anti-inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules 2015; 20:13041-13054. 
48. Zhai KF, Duan H, Cui CY, Cao YY, Si JL, Yang HJ, et al. Liquiritin from glycyrrhiza uralensis attenuating rheumatoid arthritis via reducing inflammation, suppressing angiogenesis, and inhibiting MAPK signaling pathway. J Agric Food Chem 2019; 67:2856-2864. 
49. Hongyan L, Suling W, Weina Z, Yajie Z, Jie R. Antihyperuricemic effect of liquiritigenin in potassium oxonate-induced hyperuricemic rats. Biomed Pharmacother 2016; 84:1930-1936. 
50. Guan Y, Li FF, Hong L, Yan XF, Tan GL, He JS, et al. Protective effects of liquiritin apioside on cigarette smoke-induced lung epithelial cell injury. Fundam Clin Pharmacol 2012; 26:473-483. 
51. Shi D, Yang J, Jiang Y, Wen L, Wang Z, Yang B. The anti-oxidant activity and neuroprotective mechanism of isoliquiritigenin. Free Radic Biol Med 2020; 152:207-215. 
52. Trendowski MR, Charif O El, Dinh PC, Travis LB, Dolan ME. Genetic and modifiable risk factors contributing to cisplatin-induced toxicities. Clin Cancer Res 2019; 25:1147-1155. 
53. Hasan MK, Ara I, Mondal MSA, Kabir Y. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 2021; 7:1-10. 
54. Abdel-Daim MM, Abushouk AI, Donia T, Alarifi S, Alkahtani S, Aleya L, et al. The nephroprotective effects of allicin and ascorbic acid against cisplatin-induced toxicity in rats. Environ Sci Pollut Res Int 2019; 26:13502-13509. 
55. Chewcharat A, Takkavatakarn K, Wongrattanagorn S, Panrong K, Kittiskulnam P, Eiam-Ong S, et al. The effects of restricted protein diet supplemented with ketoanalogue on renal function, blood pressure, nutritional status, and chronic kidney disease-mineral and bone disorder in chronic kidney disease patients: A systematic review and meta-analysis. J Ren Nutr 2020; 30:189-199. 
56. Ali BH, Abdelrahman A, Al Suleimani Y, Manoj P, Ali H, Nemmar A, et al. Effect of concomitant treatment of curcumin and melatonin on cisplatin-induced nephrotoxicity in rats. Biomed Pharmacother 2020; 131:110761-110769. 
57. Gülçin I. Anti-oxidant activity of food constituents: An overview. Arch Toxicol 2012; 86:345-391. 
58. Gulcin İ. Anti-oxidants and anti-oxidant methods: An updated overview. ArchToxicol 2020; 94:651-715. 
59. Shen B, Wang F, Zhou Y, Li T, He C, Zhao W. Ginsenoside Rh2 inhibits renal fibrosis and renal cell apoptosis in rats with diabetic nephropathy by downregulating discoid domain receptor 1. Nan Fang Yi Ke Da Xue Xue Bao 2021; 41:1107-1113. 
60. Goorani S, Zhaleh M, Zangeneh A, Koohi MK, Rashidi K, Moradi R, et al. The aqueous extract of Glycyrrhiza glabra effectively prevents induced gastroduodenal ulcers: Experimental study on wistar rats. Comp Clin Path 2019; 28:339-347.