Conjugated linoleic acid modifies transcriptional cytokine profile and induces early specific secretory IgA response in Giardia lamblia infected mice

Document Type : Original Article

Authors

1 Departamento de Nutrición y Metabolismo. Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, México

2 Departamento de Investigación en Física. Universidad de Sonora, Hermosillo, México

3 CONACYT-Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, México

4 Departamento de Ciencias de la Salud. Universidad de Sonora. Hermosillo, México

Abstract

Objective(s): Adaptive immunity is crucial in controlling Giardia lamblia infection in the intestinal mucosa, and some dietary lipids may improve mucosal immune function. The aim of this study was to evaluate conjugated linoleic acid (CLA) on the Th17/Treg response and secretory IgA production in a model of giardiasis infection.
Materials and Methods: C3H/HeN male mice were infected with 5×106 G. lamblia trophozoites (GS/M-83-H7, ATCC collection). Mice were assigned randomly to experimental and control groups. CLA was administered to the experimental group and phosphate-buffered saline (PBS) was given to the control group. Parasite load kinetics was determined. Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate IgA and cytokines. Nuclear transcription factors and cytokines were measured by RT-qPCR, and histology of small bowel cells was evaluated.
Results: CLA administration reduced the parasite load (P<0.05) and increased early Giardia-specific secretory IgA production. CLA also increased the expression of interleukin-10, transforming growth factor (TGF)-β, and inducible nitric oxide synthase (iNOS) (P<0.05), while infection elevated the expression of Foxp3, with a peak at 40 days post-infection (P<0.05). There were no pathological changes in the colonic mucosa due to infection or treatment. Thus, CLA stimulated mucosal immunity and enhanced the humoral response against G. lamblia, not only for early infection control but also to promote regulatory cytokine production at 40 dpi, restoring the intestinal balance after parasite elimination.
Conclusion: Our findings reveal novel anti-parasitic effects through the immune-modulatory activity of CLA against the intestinal parasite G. lamblia. 

Keywords


1. Adam RD. Biology of Giardia lamblia. Clin Microbiol Rev 2001; 14:447–475. 
2. Lane S and Lloyd D. Current trends in research into the waterborne parasite Giardia. Crit Rev Microbiol 2002; 28:123–147. 
3. Ortega YR and Adam RD. Giardia: overview and update. Clin Infect Dis 1997; 25:545–550. 
4. Lopez-Romero G, Quintero J, Astiazarán-García H, Velazquez C. Host defences against Giardia lamblia. Parasite Immunol 2015; 37:394–406. 
5. Faubert G.  Immune response to Giardia duodenalis . Clin Microbiol Rev 2000; 13:35–54. 
6. Amorim RMR, Silva DAO, Taketomi EA, Morato MGVA, Mundim MJS, Ribeiro DP, et al. Giardia duodenalis: Kinetics of cyst elimination and the systemic humoral and intestinal secretory immune responses in gerbils (Meriones unguiculatus) experimentally infected. Exp Parasitol 2010; 125:297–303. 
7. Velazquez C, Beltran M, Ontiveros N, Rascon L, Figueroa DC, Granados AJ, et al. Giardia lamblia infection induces different secretory and systemic antibody responses in mice. Parasite Immunol 2005; 27:351–356. 
8. Solaymani-Mohammadi S. Mucosal defense against giardia at the intestinal epithelial cell interface. Front Immunol 2022; 13:578. 
9. Eckmann L. Mucosal defences against Giardia. Parasite Immunol 2003; 25:259–270. 
10. Solaymani-Mohammadi S, Singer SM. Giardia duodenalis: the double-edged sword of immune responses in giardiasis. Exp Parasitol 2010; 126:292–297. 
11. Jenikova G, Hruz P, Andersson MK, Tejman-Yarden N, Ferreira PCD, Andersen YS, et al. α1-giardin based live heterologous vaccine protects against Giardia lamblia infection in a murine model. Vaccine 2011; 29:9529–9537. 
12. Gardner TB, Hill DR. Treatment of giardiasis. Clin Microbiol Rev 2001; 14:114–128. 
13. O’Shea M, Bassaganya-Riera J, Mohede ICM. Immunomodulatory properties of conjugated linoleic acid. Am J Clin Nutr 2004;79:1199S-1206S. 
14. Chin SF, Liu W, Storkson JM, Ha YL, and Pariza MW. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J Food Compos Anal 1992; 5:185–197. 
15. Pérez-Cano FJ, Ramírez-Santana C, Molero-Luís M, Castell M, Rivero M, Castellote C, et al. Mucosal IgA increase in rats by continuous CLA feeding during suckling and early infancy. J Lipid Res 2009; 50:467-476. 
16. Ramírez-Santana C, Castellote C, Castell M, Rivero M, Rodríguez-Palmero M, Franch À, et al. Long-term feeding of the cis-9,trans-11 isomer of conjugated linoleic acid reinforces the specific immune response in rats. J Nutr 2009; 139:76–81. 
17. Sugano M, Tsujita A, Yamasaki M, Noguchi M, Yamada K. Conjugated linoleic acid modulates tissue levels of chemical mediators and immunoglobulins in rats. Lipids 1998; 33:521–527. 
18. Peterson KM, O’Shea M, Stam W, Mohede ICM, Patrie JT, and Hayden FG. Effects of dietary supplementation with conjugated linoleic acid on experimental human rhinovirus infection and illness. Antivir Ther 2009; 14:33-43. 
19. Bassaganya-Riera J, Pogranichniy RM, Jobgen SC, Halbur PG, Yoon KJ, O’Shea M, et al. Conjugated linoleic acid ameliorates viral infectivity in a pig model of virally induced immunosuppression. J Nutr 2003; 133:3204–3214. 
20. Keister DB. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 1983; 77:487–488. 
21. Byrd LG, Conrad JT, and Nash TE. Giardia lamblia infections in adult mice. Infect Immun 1994; 62:3583–3585. 
22. Drakes M, Blanchard T, and Czinn S. Bacterial probiotic modulation of dendritic cells. Infect Immun 2004; 72:3299–3309. 
23. Montalvo Corral M, Puebla Clark L, López Robles G, Reyes Duarte I, López Cervantes G, Moya Camarena SY. Conjugated linoleic acid enhances intestinal mucosal innate immunity against parasite Giardia lamblia in a murine model. Nov Sci 2018; 10:228-246. 
24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001; 25:402-408. 
25. Dreesen L, Bosscher K De, Grit G, Staels B, Lubberts E, Bauge E, et al. Giardia muris infection in mice is associated with a protective interleukin 17A response and induction of peroxisome proliferator-activated receptor alpha. Infect Immun 2014; 82:3333–3340. 
26. Fontenot JD, Gavin MA, and Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4:330–336. 
27. Dai Y, Su W, Ding Z, Wang X, Mercanti F, Chen M, et al. Regulation of MSR-1 and CD36 in macrophages by LOX-1 mediated through PPAR-γ. Biochem Biophys Res Commun 2013; 431:496–500. 
28. Dann SM, Manthey CF, Le C, Miyamoto Y, Gima L, Abrahim A, et al. IL-17A promotes protective IgA responses and expression of other potential effectors against the lumen-dwelling enteric parasite Giardia. Exp Parasitol 2015; 156:68–78. 
29. Zhang H, Hu X, Liu X, Zhang R, Fu Q, Xu X. The Treg/Th17 imbalance in toxoplasma gondii-infected pregnant mice. Am J Reprod Immunol 2012; 67:112–121. 
30. Wang QS, Xiang Y, Cui YL, Lin KM, Zhang XF. Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation. PLoS One 2012; 7:e34122. 
31. Fritsche K. Fatty acids as modulators of the immune response. Annu Rev Nutr 2006; 26:45–73. 
32. Ramírez-Santana C, Castellote C, Castell M, Moltó-Puigmartí C, Rivero M, Pérez-Cano FJ, et al. Enhancement of antibody synthesis in rats by feeding cis-9,trans-11 conjugated linoleic acid during early life. J Nutr Biochem 2011; 22:495–501. 
33. Jiménez JC, Fontaine J, Creusy C, Fleurisse L, Grzych JM, Capron M, et al. Antibody and cytokine responses to Giardia excretory/secretory proteins in Giardia intestinalis-infected BALB/c mice. Parasitol Res 2014; 113:2709–2718. 
34. Jiménez-Penago G, Hernández-Mendo O, González-Garduño R, Torres-Hernández G, and Granados-Rivera LD. Immune and parasitic response to conjugated linoleic acid in the diet of pelibuey sheep infected with gastrointestinal nematodes. Ital J Anim Sci 2021; 20:1935–1946. 
35. Yamasaki M, Kishihara K, Mansho K, Ogino Y, Kasai M, Sugano M, et al. Dietary conjugated linoleic acid increases immunoglobulin productivity of Sprague-dawley rat spleen lymphocytes. Biosci Biotechnol Biochem 2000; 64:2159–2164. 
36. Perlmutter DH, Leichtner AM, Goldman H, Winter HS. Chronic diarrhea associated with hypogammaglobulinemia and enteropathy in infants and children. Dig Dis Sci 1985; 30:1149-1155. 
37. Snider DP, Skea D, and Underdown BJ. Chronic giardiasis in B-cell-deficient mice expressing the xid gene. Infect Immun 1988; 56:2838–2842. 
38. Pinelli-Saavedra A, Peralta-Quintana JR, Sosa-Castañeda J, Moya-Camarena SY, Burgara-Estrella A, Hernández J. Dietary conjugated linoleic acid and its effect on immune response in pigs infected with the porcine reproductive and respiratory syndrome virus. Res Vet Sci 2015; 98:30-38. 
39. Yamasaki M, Chujo H, Hirao A, Koyanagi N, Okamoto T, Tojo N, et al. Immunoglobulin and cytokine production from spleen lymphocytes is modulated in C57BL/6J mice by dietary cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid. J Nutr 2003; 133:784–788. 
40. Draper E, DeCourcey J, Higgins SC, Canavan M, McEvoy F, Lynch M, et al. Conjugated linoleic acid suppresses dendritic cell activation and subsequent Th17 responses. J Nutr Biochem 2014; 25:741–749. 
41. Kamda JD, Nash TE, Singer SM. Giardia duodenalis: Dendritic cell defects in IL-6 deficient mice contribute to susceptibility to intestinal infection. Exp Parasitol 2012; 130:288–291. 
42. Bassaganya-Riera J, Viladomiu M, Pedragosa M, De Simone C, Hontecillas R. Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteria. PLoS One 2012; 7. 
43. Belury MA, Moya-Camarena SY, Lu M, Shi L, Leesnitzer LM, Blanchard SG. Conjugated linoleic acid is an activator and ligand for peroxisome proliferator-activated receptor-gamma (PPARγ). Nutr Res 2002; 22:817–824. 
44. Moya-Camarena SY, Vanden Heuvel JP, Blanchard SG, Leesnitzer LA, Belury MA. Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARα. J Lipid Res 1999; 40:1426–1433. 
45. Kim DI, Kim KH, Kang JH, Jung EM, Kim SS, Jeung EB, et al. Trans-10, cis-12-conjugated linoleic acid modulates NF-κB activation and TNF-α production in porcine peripheral blood mononuclear cells via a PPARγ-dependent pathway. Br J Nutr 2011; 105:1329–1336. 
46. Dowling JK, McCoy CE, Doyle SL, BenLarbi N, Canavan M, O’Neill LA, et al. Conjugated linoleic acid suppresses IRF3 activation via modulation of CD14. J Nutr Biochem 2013; 24:920-928. 
47. Loscher CE, Draper E, Leavy O, Kelleher D, Mills KHG, Roche HM. Conjugated linoleic acid suppresses NF-κB activation and IL-12 production in dendritic cells through ERK-mediated IL-10 induction. J Immunol 2005; 175:4990–4998. 
48. Borniquel S, Jädert C, Lundberg JO. Dietary conjugated linoleic acid activates PPARγ and the intestinal trefoil factor in SW480 cells and mice with dextran sulfate sodium-induced colitis. J Nutr 2012; 142:2135–2140. 
49. Reynolds CM, Draper E, Keogh B, Rahman A, Moloney AP, Mills KHG, et al. A conjugated linoleic acid-enriched beef diet attenuates lipopolysaccharide-induced inflammation in mice in part through PPARγ-mediated suppression of toll-like receptor 4. J Nutr 2009; 139:2351–2357. 
50. Mccarthy C, Duffy MM, Mooney D, James WG, Griffin MD, Fitzgerald DJ, et al. IL‐10 mediates the immunoregulatory response in conjugated linoleic acid‐induced regression of atherosclerosis. Wiley Online Libr 2013; 27:499–510. 
51. Fahmida Khatoon RSY. Natural Regulatory T Cells in Some Parasitic Diseases. J Bacteriol Parasitol 2014; 06:4. 
52. Gagliani N, Amezcua Vesely MC, Iseppon A, Brockmann L, Xu H, Palm NW, et al. TH17 cells transdifferentiate into regulatory T cells uring resolution of inflammation. Nature 2015; 523:221–225. 
53. Chen TL, Chen S, Wu HW, Lee TC, Lu YZ, Wu LL, et al. Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut Pathog 2013; 5:1–12. 
54. Evans NP, Misyak SA, Schmelz EM, Guri AJ, Hontecillas R, Bassaganya-Riera J. Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARγ. J Nutr 2010; 140:515–521.