The effects of Dendrobium species on the metabolic syndrome: A review

Document Type : Review Article


1 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran


Metabolic syndrome (MetS) is known as a global health challenge with different types of health conditions such as hypertension, hyperglycemia, the increasing prevalence of obesity, and hyperlipidemia. Despite much recent scientific progress, the use of traditional herbal medicines with fewer side effects is increasing worldwide. Dendrobium, the second-largest orchid genus, has been used as a natural source of drugs for the treatment of MetS. The beneficial effects of Dendrobium, including anti-hypertension, anti-hyperglycemia, anti-obesity, and anti-hyperlipidemic against MetS have been shown in the scientific evidence. The anti-oxidant and lipid-lowering effects of Dendrobium modulate hyperlipidemia via reducing lipid accumulation and maintaining lipid metabolism. Restoring pancreatic beta cells and regulating the insulin signaling pathway are involved in its antidiabetic properties. The hypotensive effects contribute to increasing nitric oxide (NO) generation and inhibiting extracellular signal-regulated kinase (ERK) signaling. More research projects, especially clinical trials, are needed to investigate the safety, efficacy, and pharmacokinetics of Dendrobium in patients. This review article provides, for the first time, comprehensive information about the efficacy of different species of Dendrobium. The described species can be a source of medicines for the treatment of MetS, which are reported in various evidence.


1. Rodriguez-Correa E, Gonzalez-Perez I, Clavel-Perez PI, Contreras-Vargas Y, Carvajal K. Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: What is the best choice? Nutr Diabetes 2020; 10: 24.
2. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018; 20: 12.
3. Katsimardou A, Imprialos K, Stavropoulos K, Sachinidis A, Doumas M, Athyros V. Hypertension in metabolic syndrome: Novel insights. Curr Hypertens Rev 2020; 16: 12-18.
4. Charlton M. Obesity, hyperlipidemia, and metabolic syndrome. Liver Transplant 2009; 15: 83-89.
5. Mansyur MA, Bakri S, Patellongi IJ, Rahman IA. The association between metabolic syndrome components, low-grade systemic inflammation and insulin resistance in non-diabetic Indonesian adolescent male. Clin Nutr ESPEN 2020; 35: 69-74.
6. Bullon-Vela V, Abete I, Tur JA, Pinto X, Corbella E, Martinez-Gonzalez MA, et al. Influence of lifestyle factors and staple foods from the mediterranean diet on non-alcoholic fatty liver disease among older individuals with metabolic syndrome features. Nutrition 2020; 71: 110620.
7. Kawamoto R, Tabara Y, Kohara K, Miki T, Kusunoki T, Takayama S, et al. Relationships between lipid profiles and metabolic syndrome, insulin resistance and serum high molecular adiponectin in Japanese community-dwelling adults. Lipids Health Dis 2011; 10: 79.
8. Wagner K-H, Schwingshackl L, Draxler A, Franzke B. Impact of dietary and lifestyle interventions in elderly or people diagnosed with diabetes, metabolic disorders, cardiovascular disease, cancer and micronutrient deficiency on micronuclei frequency–a systematic review and meta-analysis. Mutat Res 2021; 787: 108-367.
9.Razavi BM, Hosseinzadeh H. A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest 2014; 37:1031-1040.
10.Razavi BM, Lookian F, Hosseinzadeh H. Protective effects of green tea on olanzapine-induced-metabolic syndrome in rats. Biomed Pharmacother 2017; 92: 726-731. 
11. Tajmohammadi A, Razavi BM, Hosseinzadeh H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytother Res 2018; 32: 1933-1949.
12. Tabeshpour J, Razavi BM, Hosseinzadeh H. Effects of avocado (Persea americana) on metabolic syndrome: A comprehensive systematic review. Phytother Res 2017; 31: 819-837.
13. Razavi BM, Hosseinzadeh H. Saffron: a promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agric 2017; 97: 1679-1685.
14. Tousian Shandiz H, Razavi BM, Hosseinzadeh H. Review of Garcinia mangostana and its xanthones in metabolic syndrome and related complications. Phytother Res 2017; 31: 1173-1182.
15. Sanati S, Razavi BM, Hosseinzadeh H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iran J Basic Med Sci 2018; 21: 439-448.
16. Akaberi M, Hosseinzadeh H. Grapes (Vitis vinifera) as a potential candidate for the therapy of the metabolic syndrome. Phytother Res 2016; 30: 540-556.
17. Tabeshpour J, Imenshahidi M, Hosseinzadeh H. A review of the effects of Berberis vulgaris and its major component, berberine, in metabolic syndrome. Iran J Basic Med Sci 2017; 20: 557-568.
18. Hosseinzadeh H, Nassiri-Asl M. Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J Endocrinol Invest 2014; 37: 783-788.
19. Yarmohammadi F, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effect of eggplant (Solanum melongena) on the metabolic syndrome: A review. Iran J Basic Med Sci 2021; 24: 420-427.
20. Cardoso JC, Zanello CA, Chen JT. An oerview of Orchid protocorm-like bodies: Mass propagation, biotechnology, molecular aspects, and breeding. Int J Mol Sci 2020; 21: 985.
21. Cakova V, Bonte F, Lobstein A. Dendrobium: sources of active ingredients to treat age-related pathologies. Aging Dis 2017; 8: 827-849.
22. Xiaohua J, Singchi C, Yibo L. Taxonomic revision of Dendrobium moniliforme complex (Orchidaceae). Sci Hortic 2009; 120: 143-145.
23. De L, Rao A, Rajeeva P, Srivastava M. Morphological characterization in Dendrobium species. Int J Biosci 2015; 4: 1198-1215.
24. Zuo J, Zu M, Liu L, Song X, Yuan Y. Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium. BMC Plant Biol 2021; 21: 127.
25. Wang HY, Li QM, Yu NJ, Chen WD, Zha XQ, Wu DL, et al. Dendrobium huoshanense polysaccharide regulates hepatic glucose homeostasis and pancreatic beta-cell function in type 2 diabetic mice. Carbohydr Polym 2019; 211: 39-48.
26. Li TM, Deng MZ. Effect of dendrobium mixture on hypoglycemic and the apoptosis of islet in rats with type 2 diabetic mellitus. Zhongyaocai 2012; 35: 765-769.
27.Xu J, Han Q-B, Li S-L, Chen X-J, Wang X-N, Zhao Z-Z, et al. Chemistry, bioactivity and quality control of Dendrobium, a commonly used tonic herb in traditional Chinese medicine. Phytochem Rev 2013; 12: 341-367.
28. Ng TB, Liu J, Wong JH, Ye X, Wing Sze SC, Tong Y, et al. Review of research on Dendrobium, a prized folk medicine. Appl Microbiol Biotechnol 2012; 93: 1795-1803.
29. Zhao Y, Son YO, Kim SS, Jang YS, Lee JC. Anti-oxidant and anti-hyperglycemic activity of polysaccharide isolated from Dendrobium chrysotoxum Lindl. Int J Biochem Mol Biol 2007; 40: 670-677.
30. Lin Y, Wang F, Yang LJ, Chun Z, Bao JK, Zhang GL. Anti-inflammatory phenanthrene derivatives from stems of Dendrobium denneanum. Phytochemistry 2013; 95: 242-251.
31. Gu FL, Huang RS, He XM, Chen NF, Han BX, Deng H. Dendrobium huoshanense polysaccharides prevent inflammatory response of ulcerative colitis rat through inhibiting the NF-kappaB signaling pathway. Chem Biodivers 2021; 18: e2100130.
32. Sattayasai N, Sudmoon R, Nuchadomrong S, Chaveerach A, Kuehnle AR, Mudalige-Jayawickrama RG, et al. Dendrobium findleyanum agglutinin: production, localization, anti-fungal activity and gene characterization. Plant Cell Rep 2009; 28: 1243-1252.
33. Xing Y-M, Chen J, Cui J-L, Chen X-M, Guo S-X. Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietman. Curr Microbiol 2011; 62: 1218-1224.
34. Luo A, Fan Y. In vitro anti-oxidant of a water-soluble polysaccharide from Dendrobium fimhriatum Hook.var.oculatum Hook. Int J Mol Sci 2011; 12: 4068-4079.
35. Paudel MR, Joshi PR, Chand K, Sah AK, Acharya S, Pant B, et al. Anti-oxidant, anticancer and antimicrobial effects of In vitro developed protocorms of Dendrobium longicornu. Biotechnol Rep 2020; 28: e00527.
36. Liu H, Ye H, Sun C, Xi H, Ma J, Lai F, et al. Anti-oxidant activity in HepG2 cells, immunomodulatory effects in RAW 264.7 cells and absorption characteristics in Caco-2 cells of the peptide fraction isolated from Dendrobium aphyllum. Int J Food Sci Technol 2018; 53: 2027-2036.
37. Yang J, Chen H, Nie Q, Huang X, Nie S. Dendrobium officinale polysaccharide ameliorates the liver metabolism disorders of type II diabetic rats. Int J Biol Macromol 2020; 164: 1939-1948.
38. Guo M, Li B, Wang R, Liu P, Chen Q. Occurrence of dieback disease caused by Fusarium equiseti on Dendrobium officinale in China. Crop Prot 2020; 137: 105209.
39. Tian CC, Zha XQ, Luo JP. A polysaccharide from Dendrobium huoshanense prevents hepatic inflammatory response caused by carbon tetrachloride. Biotechnol Biotechnol Equip 2015; 29: 132-138.
40. Yin XZ, Chi WM, Zhang L, Su YQ, Zhang ZY, Xue CB. Protective effects of Dendrobium candidum Wall ex Lindl. on high-fat diet-induced liver damage in mice. J Food Biochem 2021; 45: e13687.
41. Fang J, Lin Y, Xie H, Farag MA, Feng S, Li J, et al. Dendrobium officinale leaf polysaccharides ameliorated hyperglycemia and promoted gut bacterial associated SCFAs to alleviate type 2 diabetes in adult mice. Food Chem: X 2022; 13: 100207.
42. Peng D, Tian W, An M, Chen Y, Zeng W, Zhu S, et al. Characterization of antidiabetic effects of Dendrobium officinale derivatives in a mouse model of type 2 diabetes mellitus. Food Chem 2023; 399: 133974.
43. Zhao M, Han J. Dendrobium Officinale Kimura et Migo ameliorates insulin resistance in rats with diabetic nephropathy. Med Sci Monit Basic Res 2018; 24: 84-92.
44. Zhang S, Tu H, Zhu J, Liang A, Huo P, Shan K, et al. Dendrobium nobile Lindl. polysaccharides improve follicular development in PCOS rats. Int J Biol Macromol 2020; 149: 826-834.
45. Liang KL, Fang P, Shi QQ, Su J, Li B, Chen SH, et al. Antihypertensive effect and mechanism of Dendrobium officinale flos on high-blood pressure rats induced by high glucose and high fat compound alcohol. Zhongguo Zhong Yao Za Zhi 2018; 43: 147-153.
46. Li B, Wang H-Y, Huang J-H, Xu W-F, Feng X-J, Xiong Z-P, et al. Polysaccharide, the active component of Dendrobium officinale, ameliorates metabolic hypertension in rats via regulating intestinal flora-SCFAs-vascular axis. Front Pharmacol 2022; 13: 935714.
47. Chen P, Wu Q, Feng J, Yan L, Sun Y, Liu S, et al. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct Target Ther 2020; 5: 51.
48. Zhang K, Zhou X, Wang J, Zhou Y, Qi W, Chen H, et al. Dendrobium officinale polysaccharide triggers mitochondrial disorder to induce colon cancer cell death via ROS-AMPK-autophagy pathway. Carbohydr Polym 2021; 264: 118018.
49. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37: 81-90.
50. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuniga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 2018; 17: 122.
51. Reaven GM. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med 1993; 44: 121-131.
52. Chandy A, Pawar B, John M, Isaac R. Association between diabetic nephropathy and other diabetic microvascular and macrovascular complications. Saudi J Kidney Dis Transpl 2008; 19: 924-928.
53. Kar P, Holt RI. The effect of sulphonylureas on the microvascular and macrovascular complications of diabetes. Cardiovasc Drugs Ther 2008; 22: 207-213.
54. Vazquez-Prieto MA, Bettaieb A, Haj FG, Fraga CG, Oteiza PI. (-)-Epicatechin prevents TNFalpha-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes. Arch Biochem Biophys 2012; 527: 113-118.
55. Bischoff Bayer H. Pharmacology of α‚Äźglucosidase inhibition. Eur J Clin Invest 1994; 24: 3-10.
56. Yang H, Yang L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J Mol Endocrinol 2016; 57: 93-108.
57. Bragt MC, Popeijus HE. Peroxisome proliferator-activated receptors and the metabolic syndrome. Physiol Behav 2008; 94: 187-197.
58. Rasalam R, Barlow J, Kennedy M, Phillips P, Wright A. GLP-1 Receptor agonists for type 2 diabetes and their role in primary care: An Australian perspective. Diabetes Ther 2019; 10: 1205-1217.
59. Limpanit R, Chuanasa T, Likhitwitayawuid K, Jongbunprasert V, Sritularak B. a-Glucosidase inhibitors from Dendrobium tortile. Rec Nat Prod 2016; 10: 609-616.
60.Chu C, Li T, Pedersen HA, Kongstad KT, Yan J, Staerk D. Antidiabetic constituents of Dendrobium officinale as determined by high-resolution profiling of radical scavenging and α-glucosidase and α-amylase inhibition combined with HPLC-PDA-HRMS-SPE-NMR analysis. Phytochem Lett 2019; 31: 47-52.
61.Li XW, Huang M, Lo K, Chen WL, He YY, Xu Y, et al. Anti-diabetic effect of a shihunine-rich extract of Dendrobium loddigesii on 3T3-L1 cells and db/db mice by up-regulating AMPK-GLUT4-PPARα. Molecules 2019; 24: 2673.
62. Sun J, Zhang F, Yang M, Zhang J, Chen L, Zhan R, et al. Isolation of alpha-glucosidase inhibitors including a new flavonol glycoside from Dendrobium devonianum. Nat Prod Res 2014; 28: 1900-1905.
63. Wang K, Wang H, Liu Y, Shui W, Wang J, Cao P, et al. Dendrobium officinale polysaccharide attenuates type 2 diabetes mellitus via the regulation of PI3K/Akt-mediated glycogen synthesis and glucose metabolism. J Funct Foods 2018; 40: 261-271.
64. Kuang MT, Li JY, Yang XB, Yang L, Xu JY, Yan S, et al. Structural characterization and hypoglycemic effect via stimulating glucagon-like peptide-1 secretion of two polysaccharides from Dendrobium officinale. Carbohydr Polym 2020; 241: 116326.
65. Inthongkaew P, Chatsumpun N, Supasuteekul C, Kitisripanya T, Putalun W, Likhitwitayawuid K, et al. α-glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum. Rev Bras Farmacogn 2017; 27: 480-487.
66. Thant MT, Chatsumpun N, Mekboonsonglarp W, Sritularak B, Likhitwitayawuid K. New fluorene derivatives from Dendrobium gibsonii and their alpha-glucosidase inhibitory activity. Molecules 2020; 25: 4931.
67. Liu Y, Yang L, Zhang Y, Liu X, Wu Z, Gilbert RG, et al. Dendrobium officinale polysaccharide ameliorates diabetic hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure. J Ethnopharmacol 2020; 248: 112308.
68. Li XW, Chen HP, He YY, Chen WL, Chen JW, Gao L, et al. Effects of rich-polyphenols extract of Dendrobium loddigesii on anti-diabetic, anti-inflammatory, anti-oxidant, and gut microbiota modulation in db/db mice. Molecules 2018; 23: m2-20.
69. Zeng J, Li D, Li Z, Zhang J, Zhao X. Dendrobium officinale attenuates myocardial fibrosis via inhibiting EMT signaling pathway in HFD/STZ-induced diabetic mice. Biol Pharm Bull 2020; 43: 864-872.
70. Altamimi TR, Gao S, Karwi QG, Fukushima A, Rawat S, Wagg CS, et al. Adropin regulates cardiac energy metabolism and improves cardiac function and efficiency. Metabolism 2019; 98: 37-48.
71. Chang J, Zhou Y, Cong G, Guo H, Guo Y, Lu K, et al. Dendrobium candidum protects against diabetic kidney lesions through regulating vascular endothelial growth factor, glucose tansporter 1, and connective tissue growth factor expression in rats. J Cell Biochem 2019; 120: 13924-13931.
72. Chen Y, Lin X, Zheng Y, Yu W, Lin F, Zhang J. Dendrobium mixture improved diabetic nephropathy in db/db mice by regulating TGF-β1/smads signal transduction. Evid Based Complement Alternat Med 2021; 2021: 9931983.
73. Zheng H, Pan L, Xu P, Zhu J, Wang R, Zhu W, et al. An NMR-based metabolomic approach to unravel the preventive effect of water-soluble extract from Dendrobium officinale Kimura & Migo on streptozotocin-induced diabetes in mice. Molecules 2017; 22: 1543.
74. Lin X, Shi H, Cui Y, Wang X, Zhang J, Yu W, et al. Dendrobium mixture regulates hepatic gluconeogenesis in diabetic rats via the phosphoinositide-3-kinase/protein kinase B signaling pathway. Exp Ther Med 2018; 16: 204-212.
75. Yunlong C, Guoqing H, Ming Z, Huijun L. Hypoglycemic effect of the polysaccharide from Dendrobium moniliforme (L.) Sw. J Zhejiang Univ Sci B 2003; 30: 693-696.
76.Xu YY, Xu YS, Wang Y, Wu Q, Lu YF, Liu J, et al. Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice. J Pharm Pharmacol 2017; 69: 1409-1417.
77. Zhang Q, Li J, Luo M, Xie GY, Zeng W, Wu Y, et al. Systematic transcriptome and regulatory network analyses reveal the hypoglycemic mechanism of Dendrobium fimbriatum. Mol Ther Nucleic Acids 2020; 19: 1-14.
78. Yu Z, Gong C, Lu B, Yang L, Sheng Y, Ji L, et al. Dendrobium chrysotoxum Lindl. alleviates diabetic retinopathy by preventing retinal inflammation and tight junction protein decrease. J Diabetes Res 2015; 2015: 518317.
79. Luo J-P, Deng Y-Y, Zha X-Q. Mechanism of polysaccharides from Dendrobium huoshanense on streptozotocin-induced diabetic cataract. Pharm Biol 2008; 46: 243-249.
80. Pan LH, Li XF, Wang MN, Zha XQ, Yang XF, Liu ZJ, et al. Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. Int J Biol Macromol 2014; 64: 420-427.
81. Hill MF, Bordoni B. Hyperlipidemia. [Updated 2022 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from:
82. Ruotolo G, Howard BV. Dyslipidemia of the metabolic syndrome. Curr Cardiol Rep 2002; 4: 494-500.
83. Ye G, Gao H, Lin Y, Ding D, Liao X, Zhang H, et al. Peroxisome proliferator-activated receptor A/G reprogrammes metabolism associated with lipid accumulation in macrophages. Metabolomics 2019; 15: 36.
84. Vernia S, Cavanagh-Kyros J, Garcia-Haro L, Sabio G, Barrett T, Jung DY, et al. The PPARalpha-FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway. Cell Metab 2014; 20:512-525.
85. McIntosh AL, Atshaves BP, Landrock D, Landrock KK, Martin GG, Storey SM, et al. Liver fatty acid binding protein gene-ablation exacerbates weight gain in high-fat fed female mice. Lipids 2013; 48: 435-448.
86. Tian CC, Zha XQ, Pan LH, Luo JP. Structural characterization and anti-oxidant activity of a low-molecular polysaccharide from Dendrobium huoshanense. Fitoterapia 2013; 91: 247-255.
87. Lei SS, Zhang NY, Zhou FC, He X, Wang HY, Li LZ, et al. Dendrobium officinale regulates fatty acid metabolism to ameliorate liver lipid accumulation in NAFLD mice. Evid Based Complement Alternat Med 2021; 19: 6689727.
88. Zhao M, Han J. Dose-dependent effect of aqueous extract from Dendrobium officinale on blood lipids and lipid peroxidation in hyperlipidemic rats. Pak J Pharm Sci 2020; 33: 929-935.
89. Fan X, Han J, Zhu L, Chen Z, Li J, Gu Y, et al. Protective activities of Dendrobium huoshanense C. Z. Tang et S. J. Cheng Polysaccharide against high-cholesterol diet-induced atherosclerosis in zebrafish. Oxidative Med Cell Longev 2020: 8365056.
90. Meng H, Wang H, Zha X, Pan L, Luo J. Comparison of hepatoprotective effects of different extracts from Dendrobium huoshanense against alcohol-induced subacute liver injury in mice. J Food Sci 2015; 36: 229-234.
91.Su TC, Jeng JS, Chien KL, Sung FC, Hsu HC, Lee YT. Hypertension status is the major determinant of carotid atherosclerosis: a community-based study in Taiwan. Stroke 2001; 32: 2265-2271.
92. Johansson BB. Hypertension mechanisms causing stroke. Clin Exp Pharmacol Physiol 1999; 26: 563-565. 
93. Rakugi H, Yu H, Kamitani A, Nakamura Y, Ohishi M, Kamide K, et al. Links between hypertension and myocardial infarction. Am Heart J 1996; 132: 213-221.
94. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cifkova R, Dominiczak AF, et al. Hypertension. Nat Rev Dis Primers 2018; 4: 18014.
95. Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89: 1401-1438.
96. Tabassum N, Ahmad F. Role of natural herbs in the treatment of hypertension. Pharmacogn Rev 2011; 5: 30-40.
97. Cao YY, Li K, Li Y, Tian XT, Ba HX, Wang A, et al. Dendrobium candidum aqueous extract attenuates isoproterenol-induced cardiac hypertrophy through the ERK signalling pathway. Pharm Biol 2020; 58: 176-183.
98. Yin C, Xu YY, Chen GY, Li B, He M, Shi QQ, et al. Efficacy of compound Dendrobium on PI3K/AKT/eNOS signaling pathway in hypertensive rats induced by “dietary disorders’’. Zhongguo Zhong Yao Za Zhi 2018; 43: 2345-2351.
99. Yan MQ, Su J, Yu JJ, Yang ZY, Wang T, Chen SH, et al. Effects and active substances of ethanol extract from Dendrobium officinale on metabolic hypertensive rats induced by comprehensive dietary. Zhongguo Zhong Yao Za Zhi 2019; 44: 4896-4904.
100. Lv GY, Xia CQ, Chen SH, Su J, Liu XP, Li B, et al. Effect of Dendrobium officinale granule on long-term-alcohol-induced hypertension rats. Zhongguo Zhong Yao Za Zhi 2013; 38: 3560-3565.
101. Li B, He X, Jin HY, Wang HY, Zhou FC, Zhang NY, et al. Beneficial effects of Dendrobium officinale on metabolic hypertensive rats by triggering the enteric-origin SCFA-GPCR43/41 pathway. Food Funct 2021; 12:5524-5538.
102. Fruhbeck G, Toplak H, Woodward E, Yumuk V, Maislos M, Oppert JM, et al. Obesity: the gateway to ill health - an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts 2013; 6: 117-120.
103. Kojta I, Chacinska M, Blachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020; 12: 1305.
104. Frasca D, Blomberg BB, Paganelli R. Aging, obesity, and inflammatory age-related diseases. Front immunol 2017; 8: 1745.
105. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15: 6184-6223.
106. Leonardini A, Laviola L, Perrini S, Natalicchio A, Giorgino F. Cross-Talk between PPARgamma and insulin signaling and modulation of insulin sensitivity. PPAR Research 2009; 2009: 818945.
107. Qu J, Tan S, Xie X, Wu W, Zhu H, Li H, et al. Dendrobium officinale polysaccharide attenuates insulin resistance and abnormal lipid metabolism in obese mice. Front Pharmacol 2021; 12: 659626.
108. Lee W, Eom DW, Jung Y, Yamabe N, Lee S, Jeon Y, et al. Dendrobium moniliforme attenuates high-fat diet-induced renal damage in mice through the regulation of lipid-induced oxidative stress. Am J Chinese Med 2012; 40: 1217-1228
109. Li X, Peng X, Guo K, Tan Z. Bacterial diversity in intestinal mucosa of mice fed with Dendrobium officinale and high-fat diet. Biotechnol J 2021; 11: 22.
110.Xu D, Zhang H, Wang X. Effects of tin caulis dendrobium polysaccharide on the prevention of non-alcoholic fatty liver disease in rats. Rev Bras de Zootec 2017; 46: 652-656.
111.Zhang J, Zhang X, Hong J. Dendrobium compound in treating 90 cases of type 2 diabetes mellitus World J Tradit Chin Med 2011; 610: 6. 
112. Wu KG, Li TH, Chen CJ, Cheng HI, Wang TY. A pilot study evaluating the clinical and immunomodulatory effects of an orally administered extract of Dendrobium huoshanense in children with moderate to severe recalcitrant atopic dermatitis. Int J Immunopathol Pharmacol 2011; 24: 367-375.
113. Xiao L, Ng TB, Feng YB, Yao T, Wong JH, Yao RM, et al. Dendrobium candidum extract increases the expression of aquaporin-5 in labial glands from patients with Sjögren’s syndrome. Phytomedicine 2011; 18: 194-198.
114. Wei D, Li YH, Zhou WY. Observation on therapeutic effect of runmushu oral liquid in treating xerophthalmia in postmenopausal women. Zhongguo Zhong Xi Yi Jie He Za Zhi 2009; 29: 646-649.
115. Zhang X, Wang M, Zhang C, Liu Z, Zhou S. Clinical study of Dendrobium nobile Lindl. intervention on patients with metabolic syndrome. Medicine (Baltimore) 2021; 100: e24574.
116. Lee MJ, Jung HK, Kim MS, Jang JH, Sim MO, Kim TM, et al. Acute toxicity and cytotoxicity evaluation of Dendrobium moniliforme aqueous extract in vivo and in vitro. Lab Anim Res 2016; 32: 144-150.
117. Yang LC, Liao JW, Wen CL, Lin WC. Subchronic and genetic safety assessment of a new medicinal Dendrobium species: Dendrobium taiseed Tosnobile in rats. Evid Based Complement Alternat Med 2018; 2018: 8950534.
118. Yi YQ, Yang QH, Su JF, Chen J, Qi H, Chen D, et al. Experimental study on preclinical quality control, urgent poison and irritation of Dendrobium aurantiacum eye drops, a class I new drug against diabetic cataract. Zhongguo Zhong Yao Za Zhi 2013; 38:1061-1066.
119. Fang H, Hu X, Wang M, Wan W, Yang Q, Sun X, et al. Anti-osmotic and anti-oxidant activities of gigantol from Dendrobium aurantiacum var. denneanum against cataractogenesis in galactosemic rats. J Ethnopharmacol 2015; 172: 238-246.
120. Gong CY, Lu B, Yang L, Wang L, Ji LL. Bibenzyl from dendrobium inhibits angiogenesis and its underlying mechanism. Yao Xue Xue Bao 2013; 48: 337-342.
121. Hu JM, Chen JJ, Yu H, Zhao YX, Zhou J. Two novel bibenzyls from Dendrobium trigonopus. J Asian Nat Prod Res 2008; 10: 653-657.
122. Yang L, Qin LH, Bligh SW, Bashall A, Zhang CF, Zhang M, et al. A new phenanthrene with a spirolactone from Dendrobium chrysanthum and its anti-inflammatory activities. Bioorg Med Chem 2006; 14: 3496-3501.
123. Pengpaeng P, Sritularak B, Chanvorachote P. Dendrofalconerol A suppresses migrating cancer cells via EMT and integrin proteins. Anticancer Res 2015; 35: 201-205.
124. Fan C, Wang W, Wang Y, Qin G, Zhao W. Chemical constituents from Dendrobium densiflorum. Phytochemistry 2001; 57:1255-1258.
125. Klongkumnuankarn P, Busaranon K, Chanvorachote P, Sritularak B, Jongbunprasert V, Likhitwitayawuid K. Cytotoxic and antimigratory activities of phenolic compounds from Dendrobium brymerianum. Evid Based Complement Alternat Med 2015; 2015: 350410.
126. Luo A, Ge Z, Fan Y, Luo A, Chun Z, He X. In vitro and in vivo anti-oxidant activity of a water-soluble polysaccharide from Dendrobium denneanum. Molecules 2011; 16: 1579-1592.