Gliosis induction on locus coeruleus in a living liver donor experimental model: A brief review

Document Type : Mini Review

Authors

1 Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico

2 Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico

3 International Collaboration (ID Proyect 1840). India

4 Laboratorio de Neuropatología Experimental. Instituto Nacional de Neurología y Neurocirugía, CDMX, Mexico

5 Centro de Investigación Biomédica del Noreste, IMSS. Monterrey, Nuevo León, Mexico

6 Investigadores por México CONAHCyT-Instituto de Neuroetología. Universidad Veracruzana, Xalapa, Veracruz, Mexico

Abstract

Living Donor Liver Transplantation (LDLT) is a promising approach to treating end-stage liver diseases, however, some post-operatory complications such as pneumonia, bacteremia, urinary tract infections, and hepatic dysfunction have been reported. In murine models using partial hepatectomy (PHx), a model that emulates LDLT, it has been determined that the synthesis of hepatic cell proliferation factors that are associated with noradrenaline synthesis are produced in locus coeruleus (LC). In addition, studies have shown that PHx decreases GABA and 5-HT2A receptors, promotes loss of dendritic spines, and favors microgliosis in rat hippocampus. The GABA and serotonin-altered circuits suggest that catecholaminergic neurons such as dopamine and noradrenaline neurons, which are highly susceptible to cellular stress, can also be damaged. To understand post-transplant affections and to perform well-controlled studies it is necessary to know the potential causes that explain as a liver surgical procedure can produce brain damage. In this paper, we review several cellular processes that could induce gliosis in LC after rat PHx.

Keywords

Main Subjects


1. Jadlowiec CC, Taner T. Liver transplantation: Current status and challenges. World J Gastroenterol 2016; 22:4438-4445. 
2.    Meirelles Júnior RF, Salvalaggio P, Rezende MBd, Evangelista AS, Guardia BD, Matielo CEL, et al. Liver transplantation: history, outcomes and perspectives. Einstein (Sao Paulo) 2015; 13:149-152. 
3.    Emond JC. Live donor liver transplantation: An international perspective. Transplantation 2016; 100:1182-1183. 
4.    Au KP, Chan ACY. Is living donor liver transplantation justified in high model for end-stage liver disease candidates (35+)? Curr Opin Organ Transplant 2019; 24:637-643. 
5.    Moghe A, Ganesh S, Humar A, Molinari M, Jonassaint N. Expanding donor selection and recipient indications for living donor liver transplantation. Clin Liver Dis 2021; 25:121-135. 
6.    Center KOT. Living liver donor. In: Hospital NM, editor. Northwestern Memorial Hospital. Chicago, USA: Northwestern Memorial Hospital; 2018. 
7.    Li J, Hou Y, Liu J, Liu B, Li L. A better way to do small-for-size liver transplantation in rats. Front Med 2011; 5:106-110. 
8.    Shaji Mathew J, Manikandan K, Santosh Kumar KY, Binoj ST, Balakrishnan D, Gopalakrishnan U, et al. Biliary complications among live donors following live donor liver transplantation. Surgeon 2018; 16:214-219. 
9.    Liang C, Takahashi K, Furuya K, Oda T, Ohkohchi N. Platelets stimulate liver regeneration in a rat model of partial liver transplantation. Liver Transpl 2021; 27:719-734. 
10.    Liang C, Takahashi K, Furuya K, Ohkohchi N, Oda T. Dualistic role of platelets in living donor liver transplantation: Are they harmful? World J Gastroenterol 2022; 28:897-908. 
11.    Michalopoulos GK, Bhushan B. Liver regeneration: Biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18:40-55. 
12.    Aller MA, Arias N, Prieto I, Agudo S, Gilsanz C, Lorente L, et al. A half century (1961-2011) of applying microsurgery to experimental liver research. World J Hepatol 2012; 4:199-208. 
13.    Michalopoulos GK. Hepatostat: Liver regeneration and normal liver tissue maintenance. Hepatology 2017; 65:1384-1392. 
14.    Inderbitzin D, Studer P, Sidler D, Beldi G, Djonov V, Keogh A, et al. Regenerative capacity of individual liver lobes in the microsurgical mouse model. Microsurgery 2006; 26:465-469. 
15.    Vdoviakova K, Vdoviakova K, Petrovova E, Kresakova L, Maloveska M, Teleky J, et al. Importance rat liver morphology and vasculature in surgical research. Med Sci Monit 2016; 22:4716-4728. 
16.    Hori T, Kirino I, Uemoto S. Right posterior segment graft in living donor liver transplantation. Hepatol Res 2015; 45:1076-1082. 
17.    Zhou Y, Xu JC, Jia YF, Xu CS. Role of death receptors in the regulation of hepatocyte proliferation and apoptosis during rat liver regeneration. Genet Mol Res 2015; 14:14066-14075. 
18.    Cirera-Salinas D, Pauta M, Allen RM, Salerno AG, Ramirez CM, Chamorro-Jorganes A, et al. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle 2012; 11:922-933. 
19.    Pachowka M, Zegarska J, Ciecierski R, Korczak-Kowalska G. The role of IL-6 during the late phase of liver regeneration. Ann Transplant 2008; 13:15-19. 
20.    Jensen KJ, Alpini G, Glaser S. Hepatic nervous system and neurobiology of the liver. Compr Physiol 2013; 3:655-665. 
21.    Llorca-Torralba M, Borges G, Neto F, Mico JA, Berrocoso E. Noradrenergic locus coeruleus pathways in pain modulation. Neuroscience 2016; 338:93-113. 
22.    Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psychiatry 2018; 9:44-58.
23.    Hadjihambi A, Arias N, Sheikh M, Jalan R. Hepatic encephalopathy: A critical current review. Hepatol Int 2018; 12:135-147. 
24.    Le Y, Liu S, Peng M, Tan C, Liao Q, Duan K, et al. Aging differentially affects the loss of neuronal dendritic spine, neuroinflammation and memory impairment at rats after surgery. PLoS One 2014; 9:e106837. 
25.    Shilpa J, Anitha M, Paulose CS. Increased neuronal survival in the brainstem during liver injury: Role of gamma-aminobutyric acid and serotonin chitosan nanoparticles. J Neurosci Res 2013; 91:1203-1214. 
26.    Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 2011; 25:181-213. 
27.    Betts MJ, Kirilina E, Otaduy MCG, Ivanov D, Acosta-Cabronero J, Callaghan MF, et al. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 2019; 142:2558-2571. 
28.    Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, et al. Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature 2015; 524:88-92. 
29.    Abg Abd Wahab DY, Gau CH, Zakaria R, Muthu Karuppan MK, BS AR, Abdullah Z, et al. Review on cross talk between neurotransmitters and neuroinflammation in striatum and cerebellum in the mediation of motor behaviour. Biomed Res Int 2019; 2019:1767203. 
30.    Schwarz LA, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol 2015; 25:R1051-R1056. 
31.    Borodovitsyna O, Joshi N, Chandler D. Persistent stress-induced neuroplastic changes in the locus coeruleus/norepinephrine system. Neural Plast 2018; 2018:1892570. 
32.    Hernandez Baltazar D, Nadella R, Cibrian Llanderal T, Puga Olguin A, Barrientos Bonilla AA, Zavala Flores LM, Villanueva Olivo A, et al. The causative and curative roles of brain-derived neurotrophic factor in Parkinson’s disease. In: Parkinson’s Disease and Beyond - A Neurocognitive Approach. InTechOpen 2018; 3:1-21.
33.    Swinny JD, Valentino RJ. Corticotropin-releasing factor promotes growth of brain norepinephrine neuronal processes through Rho GTPase regulators of the actin cytoskeleton in rat. Eur J Neurosci 2006; 24:2481-2490. 
34.    Li J, Yan HT, Che JX, Bai SR, Qiu QM, Ren L, et al. Effects of neurolytic celiac plexus block on liver regeneration in rats with partial hepatectomy. PLoS One 2013; 8:e73101. 
35.    Dum RP, Levinthal DJ, Strick PL. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. Proc Natl Acad Sci U S A 2016; 113:9922-9927. 
36.    Bondarenko NS, Murtazina AR, Nikishina YO, Sapronova AY, Ugrumov MV. Molecular mechanisms of synthesis of noradrenaline as an inducer of development in the adrenal glands of rats in ontogenesis. Dokl Biochem Biophys 2017; 472:23-26. 
37.    Zhang Y, Lv YL, Si YN, Zhou J, Qian Y, Bao HG. Alpha-lipoic acid attenuates spatial learning and memory impairment induced by hepatectomy. Exp Ther Med 2019; 17:2329-2333. 
38.    Garabal MV, Arévalo RM, Díaz-Palarea MD, Castro R, Rodríguez M. Tyrosine availability and brain noradrenaline synthesis in the fetus: control by maternal tyrosine ingestion. Brain Res 1988; 457:330-337. 
39.    Vargas-Caraveo A, Sayd A, Maus SR, Caso JR, Madrigal JLM, Garcia-Bueno B, et al. Lipopolysaccharide enters the rat brain by a lipoprotein-mediated transport mechanism in physiological conditions. Sci Rep 2017; 7:13113. 
40.    Hernandez Baltazar D, Nadella R, Barrientos Bonilla A, Flores Martinez Y, Olguin A, Heman Bozadas P, et al. Does lipopolysaccharide-based neuroinflammation induce microglia polarization? Folia Neuropathol 2020; 58:113-122. 
41.    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 2011; 108:16050-16055. 
42.    Schwarz C, Fitschek F, Bar-Or D, Klaus DA, Tudor B, Fleischmann E, et al. Inflammatory response and oxidative stress during liver resection. PLoS One 2017; 12:e0185685. 
43.    Senoner T, Schindler S, Stattner S, Ofner D, Troppmair J, Primavesi F. Associations of oxidative stress and postoperative outcome in liver surgery with an outlook to future potential therapeutic options. Oxid Med Cell Longev 2019; 2019:3950818. 
44.    Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, et al. The role of oxidative stress and anti-oxidants in liver diseases. Int J Mol Sci 2015; 16:26087-26124. 
45.    Liu KY, Marijatta F, Hammerer D, Acosta-Cabronero J, Duzel E, Howard RJ. Magnetic resonance imaging of the human locus coeruleus: A systematic review. Neurosci Biobehav Rev 2017; 83:325-355. 
46.    Seidel K, Mahlke J, Siswanto S, Kruger R, Heinsen H, Auburger G, et al. The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies. Brain Pathol 2015; 25:121-135. 
47.    Kelly SC, He B, Perez SE, Ginsberg SD, Mufson EJ, Counts SE. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease. Acta Neuropathol Commun 2017; 5:8-21. 
48.    Tabrez S, Jabir NR, Shakil S, Greig NH, Alam Q, Abuzenadah AM, et al. A synopsis on the role of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol Disord Drug Targets 2012; 11:395-409.