1. Heron M. Deaths: Leading causes for 2015. Natl Vital Stat Rep 2017; 66: 1-76.
2. Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022; 66: 15-23.
3. Kumar P, Aggarwal R. An overview of triple-negative breast cancer. Arch Gynecol Obstet 2016; 293:247-269.
4. Engebraaten O, Vollan HKM, Børresen-Dale A-L. Triple-negative breast cancer and the need for new therapeutic targets. Am J Pathol 2013; 183: 1064-1074.
5. Yersal O, Barutca S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Onco 2014; 5: 412-424.
6. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004; 10: 5367-5374.
7. Krishnamurthy S, Poornima R, Challa VR, Goud YB. Triple negative breast cancer-our experience and review. Indian J Surg Oncol 2012; 3: 12-16.
8. Perou CM, Sørlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747-752.
9. Wu W, Zhao S. Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim Biophys Sin 2013; 45: 18-26.
10. Yao L, Wang L, Cao ZG, Hu X, Shao ZM. High expression of metabolic enzyme PFKFB4 is associated with poor prognosis of operable breast cancer. Cancer Cell Int 2019; 19: 165-176.
11. Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: The essential role of the nonessential amino acid, glutamine. EMBO J 2017; 36: 1302-1315.
12. Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, et al. The roles of glucose metabolic reprogramming in chemo-and radio-resistance. J Exp Clin Cancer Res 2019; 38:1-13.
13. Sica V, Bravo‐San Pedro JM, Stoll G, Kroemer G. Oxidative phosphorylation as a potential therapeutic target for cancer therapy. Inter J Cancer 2020; 146: 10-17.
14. Derouane F, Desgres M, Moroni C, Ambroise J, Berliere M, Van Bockstal MR, et al. Metabolic adaptation towards glycolysis supports resistance to neoadjuvant chemotherapy in early triple negative breast cancers. Breast Cancer Res 2024; 26: 29-47.
15. Liu Q, Liu N, van der Noord V, van der Stel W, van de Water B, Danen EHJ, et al. Differential response of luminal and basal breast cancer cells to acute and chronic hypoxia. Breast Cancer Res Treat 2023; 198: 583-596.
16. Wen S, Zhu D, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Future Med Chem 2013; 5: 53-67.
17. Chen Z, Lu W, Garcia-Prieto C, Huang P. The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr 2007; 39: 267-274.
18. Jaworska M, Szczudlo J, Pietrzyk A, Shah J, Trojan SE, Ostrowska B, et al. The Warburg effect: A score for many instruments in the concert of cancer and cancer niche cells. Pharmacol Rep 2023; 75: 876-890.
19. Bandera-Merchan B, Boughanem H, Crujeiras AB, Macias-Gonzalez M, Tinahones FJ. Ketotherapy as an epigenetic modifier in cancer. Rev Endocr Metab Disord 2020; 21: 509-519.
20. Feng S, Wang H, Liu J, Jiye A, Zhou F, Wang G. Multi-dimensional roles of ketone bodies in cancer biology: Opportunities for cancer therapy. Pharmacol Res 2019; 150: 104500.
21. Poff AM, Ari C, Seyfried TN, D’Agostino DP. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS One 2013; 8: e65522.
22. Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP. Ketone body utilization drives tumor growth and metastasis. Cell Cycle 2012; 11: 3964-3971.
23. Ideraabdullah FY, Zeisel SH. Dietary modulation of the epigenome. Physiol Rev 2018; 98: 667-695.
24. Zhuang J, Huo Q, Yang F, Xie N. Perspectives on the role of histone modification in breast cancer progression and the advanced technological tools to study epigenetic determinants of metastasis. Front Genet 2020; 11: 603552.
25. Ungaro P, Nettore IC, Franchini F, Palatucci G, Muscogiuri G, Colao A, et al. Epigenome modulation induced by ketogenic diets. Nutrients 2022; 14: 3245-3255.
26. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol 1927; 8: 519-530.
27. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycl 2009; 8: 3984-4001.
28. Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 2018; 9: 216-237.
29. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11-20.
30. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 2007; 104: 19345-19350.
31. DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 2008; 18: 54-61.
32. Thompson C, Bauer D, Lum J, Hatzivassiliou G, ZONG W-X, Zhao F, et al. Editors. How do cancer cells acquire the fuel needed to support cell growth? Cold Spring Harb Symp Quant Biol; 2005; 70: 357-362.
33. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang X-Y, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Nat Acad Sci U S A 2008; 105: 18782-18787.
34. Dang CV. Glutaminolysis: Supplying carbon or nitrogen or both for cancer cells? Cell Cycle, 2010; 9: 3884-3886.
35. Ward PS, Thompson CB. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 2012; 21: 297-308.
36. Willmann L, Schlimpert M, Halbach S, Erbes T, Stickeler E, Kammerer B. Metabolic profiling of breast cancer: Differences in central metabolism between subtypes of breast cancer cell lines. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1000: 95-104.
37. Lanning NJ, Castle JP, Singh SJ, Leon AN, Tovar EA, Sanghera A, et al. Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities. Cancer Metab 2017; 5: 1-14.
38. Budczies J, Denkert C, Müller BM, Brockmöller SF, Klauschen F, Györffy B, et al. Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue–a GC-TOFMS based metabolomics study. BMC Genomic 2012; 13: 1-11.
39. Brauer HA, Makowski L, Hoadley KA, Casbas-Hernandez P, Lang LJ, Romàn-Pèrez E, et al. Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer. Clin Cancer Res, 2013; 19: 571-585.
40. Santidrian AF, Matsuno-Yagi A, Ritland M, Seo BB, LeBoeuf SE, Gay LJ, et al. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest 2013; 123: 1068-1081.
41. Choi J, Jung W-H, Koo JS. Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology 2012; 80: 41-52.
42. Wang J, Ye C, Chen C, Xiong H, Xie B, Zhou J, et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis. Oncotarget 2017; 8: 16875.
43. Krzeslak A, Wojcik-Krowiranda K, Forma E, Jozwiak P, Romanowicz H, Bienkiewicz A, et al. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res 2012; 18: 721-728.
44. Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 2013; 24: 213-228.
45. Yang T, Ren C, Qiao P, Han X, Wang L, Lv S, et al. PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer. Oncogene 2018; 37: 5997-6009.
46. Hennipman A, Smits J, Van Oirschot B, Van Houwelingen J, Rijksen G, Neyt J, et al. Glycolytic enzymes in breast cancer, benign breast disease and normal breast tissue. Tumor Biol 1987; 8: 251-263.
47. Wang G, Xu Z, Wang C, Yao F, Li J, Chen C, et al. Differential phosphofructokinase‑1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues. Oncol Let 2013; 6: 1701-1706.
48. Dong G, Mao Q, Xia W, Xu Y, Wang J, Xu L, et al. PKM2 and cancer: The function of PKM2 beyond glycolysis. Oncol Let 2016; 11: 1980-1986.
49. Zhao Z, Song Z, Liao Z, Liu Z, Sun H, Lei B, et al. PKM2 promotes stemness of breast cancer cell by through Wnt/β-catenin pathway. Tumor Bioll 2016; 37: 4223-4234.
50. Eastlack SC, Dong S, Ivan C, Alahari SK. Suppression of PDHX by microRNA-27b deregulates cell metabolism and promotes growth in breast cancer. Mol Cancer 2018; 17: 1-16.
51. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci 2014; 39: 347-354.
52. Benito A, Polat IH, Noé V, Ciudad CJ, Marin S, Cascante M. Glucose-6-phosphate dehydrogenase and transketolase modulate breast cancer cell metabolic reprogramming and correlate with poor patient outcome. Oncotarget 2017; 8: 106693.
53. Choi J, Kim E-S, Koo JS. Expression of pentose phosphate pathway-related proteins in breast cancer. Dis Markers 2018; 2018: 9369358.
54. Corchado-Cobos R, García-Sancha N, Mendiburu-Eliçabe M, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, et al. Pathophysiological integration of metabolic reprogramming in breast cancer. Cancers 2022; 14: 322-355.
55. Kim S, Kim DH, Jung W-H, Koo JS. Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer. Endocr Relat Cancer 2013; 20: 339-348.
56. Lampa M, Arlt H, He T, Ospina B, Reeves J, Zhang B, et al. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS One 2017; 12: e0185092.
57. Kung H-N, Marks JR, Chi J-T. Glutamine synthetase is a genetic determinant of cell type–specific glutamine independence in breast epithelia. PLoS Genet 2011; 7: e1002229.
58. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genet 2011; 43: 869-874.
59. Chen J, Chung F, Yang G, Pu M, Gao H, Jiang W, et al. Phosphoglycerate dehydrogenase is dispensable for breast tumor maintenance and growth. Oncotarget 2013; 4: 2502-2511.
60. Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer 2016; 16: 650-662.
61. Currie E, Schulze A, Zechner R, Walther TC, Farese RV. Cellular fatty acid metabolism and cancer. Cell Metabo 2013; 18: 153-161.
62. Hilvo M, Denkert C, Lehtinen L, Müller B, Brockmöller S, Seppänen-Laakso T, et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res 2011; 71: 3236-3245.
63. Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets 2017; 21: 1001-1016.
64. Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer 2009; 100: 1369-1372.
65. Vazquez‐Martin A, Ortega‐Delgado FJ, Fernandez‐Real JM, Menendez JA. The tyrosine kinase receptor HER2 (erbB‐2): From oncogenesis to adipogenesis. J Cell Biochem 2008; 105: 1147-1152.
66. Katz-Brull R, Margalit R, Bendel P, Degani H. Choline metabolism in breast cancer; 2 H-, 13 C-and 31 P-NMR studies of cells and tumors. MAGMA 1998; 6: 44-52.
67. Glunde K, Jie C, Bhujwalla ZM. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res 2004; 64: 4270-4276.
68. Chen Y, Zheng Y, Foster DA. Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene 2003; 22: 3937-3942.
69. Noh D-Y, Ahn S-J, Lee R-A, Park I-A, Kim J-H, Suh P-G, et al. Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Let 2000; 161: 207-214.
70. Shukla S, Penta D, Mondal P, Meeran SM. Epigenetics of breast cancer: Clinical status of epi-drugs and phytochemicals. Adv Exp Med Biol 2019; 1: 293-310.
71. Chatterjee A, Rodger EJ, Eccles MR, editors. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol 2018; 1: 149-159.
72. Zhu B, Hsieh Y-P, Murphy TW, Zhang Q, Naler LB, Lu C. MOWChIP-seq for low-input and multiplexed profiling of genome-wide histone modifications. Nat Protoc 2019; 14: 3366-3394.
73. Grosselin K, Durand A, Marsolier J, Poitou A, Marangoni E, Nemati F, et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nature Geneti 2019; 51: 1060-1066.
74. Li Y, Li S, Chen J, Shao T, Jiang C, Wang Y, et al. Comparative epigenetic analyses reveal distinct patterns of oncogenic pathways activation in breast cancer subtypes. Hum Mol Genet 2014; 23: 5378-5393.
75. Mungamuri SK, Murk W, Grumolato L, Bernstein E, Aaronson SA. Chromatin modifications sequentially enhance ErbB2 expression in ErbB2-positive breast cancers. Cell Rep 2013; 5: 302-313.
76. Falahi F, Huisman C, Kazemier HG, van der Vlies P, Kok K, Hospers GA, et al. Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Mol Cancer Res 2013; 11: 1029-1039.
77. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403: 41-45.
78. Tryndyak VP, Kovalchuk O, Pogribny IP. Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther 2006; 5: 65-70.
79. Falahi F, van Kruchten M, Martinet N, Hospers G, Rots MG. Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer. Breast Cancer Res 2014; 16: 1-11.
80. Guo P, Chen W, Li H, Li M, Li L. The histone acetylation modifications of breast cancer and their therapeutic implications. Pathol Onco Res 2018; 24: 807-813.
81. Jin W, Li Q-Z, Liu Y, Zuo Y-C. Effect of the key histone modifications on the expression of genes related to breast cancer. Genomics 2020; 112: 853-858.
82. Karami Fath M, Azargoonjahromi A, Kiani A, Jalalifar F, Osati P, Akbari Oryani M, et al. The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Let 2022; 27: 52-62.
83. Serce N, Gnatzy A, Steiner S, Lorenzen H, Kirfel J, Buettner R. Elevated expression of LSD1 (Lysine-specific demethylase 1) during tumour progression from pre-invasive to invasive ductal carcinoma of the breast. BMC Clin Pathol 2012; 12: 13-19.
84. Lopez J, Percharde M, Coley H, Webb A, Crook T. The context and potential of epigenetics in oncology. Br J Cancer 2009; 100: 571-577.
85. Lustberg MB, Ramaswamy B. Epigenetic therapy in breast cancer. Curr Breast Cancer Rep 2011; 3: 34-43.
86. Esteller M. CpG island hypermethylation and tumor suppressor genes: A booming present, a brighter future. Oncogene 2002; 21: 5427-5440.
87. Radpour R, Barekati Z, Kohler C, Schumacher MM, Grussenmeyer T, Jenoe P, et al. Integrated epigenetics of human breast cancer: synoptic investigation of targeted genes, microRNAs and proteins upon demethylation treatment. PLoS One 2011; 6: e27355.
88. Hoque MO, Prencipe M, Poeta ML, Barbano R, Valori VM, Copetti M, et al. Changes in CpG islands promoter methylation patterns during ductal breast carcinoma progression. Cancer Epidemiol Biomarkers Prev 2009; 18: 2694-2700.
89. Gheibi A, Kazemi M, Baradaran A, Akbari M, Salehi M. Study of promoter methylation pattern of 14-3-3 sigma gene in normal and cancerous tissue of breast: A potential biomarker for detection of breast cancer in patients. Adv Biomed Res 2012; 1: 80-84.
90. Park SY, Seo AN, Jung HY, Gwak JM, Jung N, Cho N-Y, et al. Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS One 2014; 9: e100429.
91. Locke WJ, Clark SJ. Epigenome remodelling in breast cancer: Insights from an early in vitro model of carcinogenesis. Breast Cancer Res 2012; 14: 215-228.
92. Prabhu KS, Sadida HQ, Kuttikrishnan S, Junejo K, Bhat AA, Uddin S. Beyond genetics: Exploring the role of epigenetic alterations in breast cancer. Pathol Res Pract 2024; 254: 155174.
93. Sarvari P, Sarvari P, Ramirez-Diaz I, Mahjoubi F, Rubio K. Advances of epigenetic biomarkers and epigenome editing for early diagnosis in breast cancer. Int J Mol Sci 2022; 23: 9521-9552.
94. Christodoulatos GS, Dalamaga M. Micro-RNAs as clinical biomarkers and therapeutic targets in breast cancer: Quo vadis? World J Clin Oncolo 2014; 5: 71-80.
95. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Rese 2005; 65: 7065-7070.
96. Mattiske S, Suetani RJ, Neilsen PM, Callen DF. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev 2012; 21: 1236-1243.
97. Luo Q, Li X, Gao Y, Long Y, Chen L, Huang Y, et al. MiRNA-497 regulates cell growth and invasion by targeting cyclin E1 in breast cancer. Cancer Cell Inte 2013; 13: 1-8.
98. Yu N, Huangyang P, Yang X, Han X, Yan R, Jia H, et al. microRNA-7 suppresses the invasive potential of breast cancer cells and sensitizes cells to DNA damages by targeting histone methyltransferase SET8. J Biol Chem 2013; 288: 19633-19642.
99. Pádua Alves C, Fonseca AS, Muys BR, Barros e Lima Bueno R, Bürger MC, Souza JE, et al. Brief report: The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. Stem Cell 2013; 31: 2827-2832.
100. Kim J-M. Ketogenic diet: Old treatment, new beginning. Clin Neurophysiol Pract 2017; 2: 161-162.
101. Rui L. Energy metabolism in the liver. Compr Physiol 2014; 4: 177-197.
102. Dhillon KK, Gupta S. Biochemistry, Ketogenesis. Treasure Island (FL) ineligible companies. 3rd ed. StatPearls Publishing; 2024.
103. Ashtary-Larky D, Bagheri R, Bavi H, Baker JS, Moro T, Mancin L, et al. Ketogenic diets, physical activity and body composition: A review. Br J Nutr 2022; 127: 1898-1920.
104. Bergqvist AC, Schall JI, Gallagher PR, Cnaan A, Stallings VA. Fasting versus gradual initiation of the ketogenic diet: A prospective, randomized clinical trial of efficacy. Epilepsia 2005; 46: 1810-1819.
105. Kossoff EH, Cervenka MC, Henry BJ, Haney CA, Turner Z. A decade of the modified Atkins diet (2003–2013): Results, insights, and future directions. Epilepsy Behav 2013; 29: 437-442.
106. Kossoff EH, Hartman AL. Ketogenic diets: new advances for metabolism-based therapies. Curr Opin Neurol 2012; 25: 173-178.
107. Caprio M, Infante M, Moriconi E, Armani A, Fabbri A, Mantovani G, et al. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: Systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J Endocrinol Invest 2019; 42: 1365-1386.
108. Neth BJ, Mintz A, Whitlow C, Jung Y, Sai KS, Register TC, et al. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: A pilot study. Neurobiol Aging 2020; 86: 54-63.
109. Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 2019; 47: 529-542.
110. Pérez-Guisado J, Muñoz-Serrano A. The effect of the Spanish Ketogenic Mediterranean Diet on nonalcoholic fatty liver disease: A pilot study. J Med Food 2011; 14: 677-680.
111. Perez-Guisado J, Munoz-Serrano A. A pilot study of the Spanish ketogenic mediterranean diet: An effective therapy for the metabolic syndrome. J Med Food 2011; 14: 681-687.
112. Perng B, Chen M, Perng J, Jambazian P. A Keto-mediet approach with coconut substitution and exercise may delay the onset of alzheimer’s disease among middle-aged. J Prev Alzheimers Dis 2017; 4: 51-57.
113. Paoli A, Cenci L, Grimaldi KA. Effect of ketogenic mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees. Nutr J 2011; 10: 112-119.
114. Dixon AM, Weichhaus M. Breast cancer metabolism: Are ketone bodies energetic substrates. Cancer Res 2016; 76: 35.
115. Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, et al. Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cyc 2010; 9: 3506-3514.
116. Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Lisanti MP, Sotgia F. Ketone bodies and two-compartment tumor metabolism: Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle 2012; 11: 3956-3963.
117. Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP. Ketone body utilization drives tumor growth and metastasis. Cell Cycle 2012; 11: 3964-3971.
118. Bartmann C, Janaki Raman SR, Flöter J, Schulze A, Bahlke K, Willingstorfer J, et al. Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation. Cancer Metabo 2018; 6: 1-19.
119. Maldonado R, Talana CA, Song C, Dixon A, Uehara K, Weichhaus M. β‑hydroxybutyrate does not alter the effects of glucose deprivation on breast cancer cells. Oncol Let 2021; 21: 65-77.
120. Zuhal K, Yilmaz AM, Yalcin AS. Effect of ketone bodies on viability of human breast cancer cells (MCF-7). Marmara Med J 2018; 31: 57-60.
121. Guan X, Bryniarski MA, Morris ME. In vitro and in vivo efficacy of the monocarboxylate transporter 1 inhibitor AR-C155858 in the murine 4T1 breast cancer tumor model. AAPS J 2018; 21: 3-26.
122. Weber DD, Aminzadeh-Gohari S, Tulipan J, Catalano L, Feichtinger RG, Kofler B. Ketogenic diet in the treatment of cancer–where do we stand? Mol Metab 2020; 33: 102-121.
123. Hopkins BD, Pauli C, Du X, Wang DG, Li X, Wu D, et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 2018; 560: 499-503.
124. Dai X, Bu X, Gao Y, Guo J, Hu J, Jiang C, et al. Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Mol Cell 2021; 81: 2317-2331.
125. Salem AF, Howell A, Sartini M, Sotgia F, Lisanti MP. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1α, autophagy and ketone body production. Cell Cycle 2012; 11: 4167-4173.
126. Khodabakhshi A, Akbari ME, Mirzaei HR, Mehrad-Majd H, Kalamian M, Davoodi SH. Feasibility, safety, and beneficial effects of MCT-based ketogenic diet for breast cancer treatment: A randomized controlled trial study. Nutr Cancer 2020; 72: 627-634.
127. Klement RJ, Champ CE, Kämmerer U, Koebrunner PS, Krage K, Schäfer G, et al. Impact of a ketogenic diet intervention during radiotherapy on body composition: III—final results of the Ketocomp study for breast cancer patients. Breast Cancer Res 2020; 22: 1-14.
128. Khodabakhshi A, Seyfried TN, Kalamian M, Beheshti M, Davoodi SH. Does a ketogenic diet have beneficial effects on quality of life, physical activity or biomarkers in patients with breast cancer: A randomized controlled clinical trial. Nutr J 2020; 19: 1-10.
129. Buga A, Harper DG, Sapper TN, Hyde PN, Fell B, Dickerson R, et al. Feasibility and metabolic outcomes of a well-formulated ketogenic diet as an adjuvant therapeutic intervention for women with stage IV metastatic breast cancer: The Keto-CARE trial. PLos One 2024; 19: e0296523.
130. İyikesici MS, Slocum AK, Slocum A, Berkarda FB, Kalamian M, Seyfried TN. Efficacy of metabolically supported chemotherapy combined with ketogenic diet, hyperthermia, and hyperbaric oxygen therapy for stage IV triple-negative breast cancer. Cureus 2017; 9: e1445.
131. Khodabakhshi A, Akbari ME, Mirzaei HR, Seyfried TN, Kalamian M, Davoodi SH. Effects of Ketogenic metabolic therapy on patients with breast cancer: A randomized controlled clinical trial. Clin Nutr 2021; 40: 751-758.
132. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301: 89-92.
133. Esteller M. Epigenetics in cancer. New Engl J Med 2008; 358: 1148-1159.
134. Coronel-Hernández J, Perez-Yepez EA, Delgado-Waldo I, Contreras-Romero C, Jacobo-Herrera N, Cantu-De Leon D, et al. Aberrant metabolism as inductor of epigenetic changes in breast cancer: therapeutic opportunities. Front Oncol 2021; 11: 676562.
135. Kinnaird A, Zhao S, Wellen KE, Michelakis ED. Metabolic control of epigenetics in cancer. Nat Rev Cancer 2016; 16:694-707.
136. Yu X, Ma R, Wu Y, Zhai Y, Li S. Reciprocal regulation of metabolic reprogramming and epigenetic modifications in cancer. Fronti Genet 2018; 9:394.
137. Katada S, Imhof A, Sassone-Corsi P. Connecting threads: Epigenetics and metabolism. Cell 2012; 148:24-28.
138. Murphy S, Rahmy S, Gan D, Liu G, Zhu Y, Manyak M, et al. Ketogenic diet alters the epigenetic and immune landscape of prostate cancer to overcome resistance to immune checkpoint blockade therapy. Cancer Res 2024; 84: 1597-1612.
139. Rahbari R, Rasmi Y, Khadem-Ansari MH, Abdi M. The role of histone deacetylase 3 in breast cancer. Med Oncol 2022; 39: 84.
140. Deng M, Yan P, Gong H, Li G, Wang J. Beta-hydroxybutyrate resensitizes colorectal cancer cells to oxaliplatin by suppressing H3K79 methylation in vitro and in vivo. Mol Med 2024; 30: 95-109.
141. Huang C-K, Chang P-H, Kuo W-H, Chen C-L, Jeng Y-M, Chang K-J, et al. Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via β-hydroxybutyrate. Nat Commun 2017; 8: 1-13.
142. Rodrigues LM, Uribe-Lewis S, Madhu B, Honess DJ, Stubbsˆ M, Griffiths JR. The action of β-hydroxybutyrate on the growth, metabolism and global histone H3 acetylation of spontaneous mouse mammary tumours: evidence of a β-hydroxybutyrate paradox. Cancer Metabol 2017; 5: 1-13.
143. Goudarzi A, Hosseinmardi N, Salami S, Mehdikhani F, Derakhshan S, Aminishakib P. Starvation promotes histone lysine butyrylation in the liver of male but not female mice. Gene 2020; 745: 144647.
144. Mehdikhani F, Ghahremani H, Nabati S, Tahmori H, Sirati-Sabet M, Salami S. Histone butyrylation/acetylation remains unchanged in triple negative breast cancer cells after a long term metabolic reprogramming. Asian Pac J Cancer Prev 2019; 20: 3597-3601.