Adiponectin: an adipokine with protective features against metabolic syndrome

Document Type : Review Article


1 Department of Clinical Biochemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Physical Education and Sports Sciences, Tarbiat Modares University, Tehran, Iran

3 Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran


Metabolic syndrome (MetS) as a collection of obesity-associated disorders is associated with inflammation, oxidative stress, pro-thrombotic state, elevated risk of developing cardiovascular disease and type 2 diabetes. Adiponectin is one of the most abundant peptide hormones derived from adipose tissue. This protein plays a major role in glucose and lipid metabolism and prevents development of vascular changes. Anti-oxidative and anti-inflammatory effects are the other features of adiponectin. Hypoadiponectinemia is associated with hypertension and pro-thrombotic state. In this review, we discuss the crucial role of adiponectin in prevention of metabolic syndrome considering its effects on the components of this syndrome. Pharmacological interventions and lifestyle modification may increase plasma adiponectin level or tissue sensitivity which seems to be a promising target for prevention and therapeutic approaches of MetS and related diseases.


1. Alberti K, Zimmet P, Shaw J. Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 2006; 23:469–480.
2. Grundy SM, Brewer HB, Cleeman JI, Smith SC, Lenfant C. Definition of metabolic syndrome report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on scientific issues related to definition. Circulation 2004; 109:433–438.
3. Pop-Busui R, Sima A, Stevens M. Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev 2006; 22:257-273.
4. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and Management of the Metabolic Syndrome An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement: Executive Summary. Circulation 2005; 112:e285–e290.
5. Pop-Busui R, Pietropaolo M. Metabolic Syndrome and Inflammation. In: Eisenbarth GS, editor. Immunoendocrinology: Scientific and Clinical Aspects. Totowa, NJ: Humana Press; 2011. p. 69–92.
6. McNeill AM, Rosamond WD, Girman CJ, Golden SH, Schmidt MI, East HE, et al. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care 2005; 28:385–390.
7. Vaiopoulos AG, Marinou K, Christodoulides C, Koutsilieris M. The role of adiponectin in human vascular physiology. Int J Cardiol 2012; 155:188–193.
8. Izadi M, Goodarzi MT, Khorshidi D, Doaly H, Samarikhalaj H. Relationship of serum adiponectin and beta-cell function in obese males with type 2 diabetes. Asian J Pharm Biol Res 2012; 2:40–44.
9. Szmitko P, Teoh H, Stewart D, Verma S. Adiponectin and cardiovascular disease: state of the art? Am J Physiol Heart Circ Physiol 2007; 292:H1655–1663.
10. Liu M, Liu F. Transcriptional and post-translational regulation of adiponectin. Biochem J 2010; 425:41–52.
11. Ziemke F, Mantzoros CS. Adiponectin in insulin resistance: lessons from translational research. Am J Clin Nutr 2010; 91:258S–261S.
12. Zhu W, Cheng KKY, Vanhoutte PM, Lam KSL, Xu A. Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention. Clin Sci 2008; 114:361.
13. Villarreal-Molina M-T, Antuna-Puente B. Adiponectin: anti-inflammatory and cardiopro-tective effects. Biochimie 2012; 94:2143e2149.
14. Yamauchi T, Kadowaki T. Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int J Obes 2008; 32:S13–S18.
15. Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Ebinuma H, et al. Measurement of the high–molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care 2006; 29:1357–1362.
16. Iacobellis G, Barbaro G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res 2008; 40:442–445.
17. Marinou K, Tousoulis D, Antonopoulos AS, Stefanadi E, Stefanadis C. Obesity and cardiovascular disease: From pathophysiology to risk stratification. Int J Cardiol 2010; 138:3–8.
18. Pang TTL, Narendran P. The distribution of adiponectin receptors on human peripheral blood mononuclear cells. Ann N Y Acad Sci 2008; 1150:143–145.
19. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423:762–769.
20. Motoshima H, Wu X, Mahadev K, Goldstein BJ. Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem Biophys Res Commun 2004; 315:264–271.  
21. Piñeiro R, Iglesias MJ, Gallego R, Raghay K, Eiras S, Rubio J, et al. Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett 2005; 579:5163–5269.  
22. Kharroubi I, Rasschaert J, Eizirik DL, Cnop M. Expression of adiponectin receptors in pancreatic β cells. Biochem Biophys Res Commun 2003; 312:1118–1122.
23. Tan KCB, Xu A, Chow WS, Lam MCW, Ai VHG, Tam SCF, et al. Hypoadiponectinemia is associated with impaired endothelium-dependent vasodila-tion. J Clin Endocrinol Metab 2004; 89:765–769.
24. Goldstein BJ, Scalia RG, Ma XL. Protective vascular and myocardial effects of adiponectin. Nat Rev Cardiol 2009; 6:27–35.
25. Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, et al. Insulin/foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem 2004; 279:30817–30822.
26. Deepa SS, Dong LQ. APPL1: role in adiponectin signaling and beyond. Am J Physiol - Endocrinol Metab 2009; 296:E22–E36.
27. Guerre-Millo M. Adiponectin: an update. Diabetes Metab 2008; 34:12–18.
28. Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 2007; 13:332–339.
29. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev 2005; 26:439–451.
30. Takeuchi T, Adachi Y, Ohtsuki Y, Furihata M. Adiponectin receptors, with special focus on the role of the third receptor, T-cadherin, in vascular disease. Med Mol Morphol 2007; 40:115–120.
31. Bijland S, Mancini SJ, Salt IP. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci 2013; 124:491–507.
32. Marsin A-S, Bertrand† L, Rider MH, Deprez J, Beauloye C, Vincent MF, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 2000; 10:1247–1255.
33. Tomas E, Tsao T-S, Saha AK, Murrey HE, Zhang C cheng, Itani SI, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl–CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci 2002; 99:16309–16313.
34. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8:1288–1295.
35. Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 2003; 52:1355–1363.
36. Liu Q, Yuan B, Lo KA, Patterson HC, Sun Y, Lodish HF. Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism. Proc Natl Acad Sci U A 2012; 109:14568–14573.
37. Izadi M, Goodarzi MT, Khalaj HS, Khorshidi D, Doali H. Serum adiponectin levels are inversely correlated with insulin resistance in obese men with type 2 diabetes. Int J Endocrinol Metab 2011; 9:253–257.
38. Goodarzi MT1, Babaahmadi-Rezaei H, Kadkhodaei-Eliaderani M, Haddadinezhad S. Relationship of serum adiponectin with blood lipids, HbA(1)c, and hs-CRP in type II diabetic postmenopausal women. J Clin Lab Anal 2007; 21:197–200.
39. McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PWF, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the framingham offspring cohort. Diabetes Care 2004; 27:538–546.
40. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7:941–946.
41. Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006; 116:1776–1783.
42. Lafontan M, Viguerie N. Role of adipokines in the control of energy metabolism: focus on adiponectin. Curr Opin Pharmacol 2006; 6:580–585.
43. Zhang B, Marcus SL, Sajjadi FG, Alvares K, Reddy JK, Subramani S, et al. Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydro-genase. Proc Natl Acad Sci U A 1992; 89:7541–7545.
44. Rodríguez JC, Gil-Gómez G, Hegardt FG, Haro D. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J Biol Chem 1994; 269:18767–18772.
45. Yoon MJ, Lee GY, Chung J-J, Ahn YH, Hong SH, Kim JB. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator–activated receptor α. Diabetes 2006; 55:2562–2570.
46. Naomi Kudo JGG. Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochim Biophys Acta BBA - Lipids Lipid Metab 1996; 67–75.
47. Cereghini S. Liver-enriched transcription factors and hepatocyte differentiation. FASEB J 1996; 10:267–282.
48. Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 2001; 21:1393–1403.
49.dom  DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 2004; 303:1378–1381.
50. Darabi M,  Rabbani M,  Ani M,  Zarean E,  Panjehpour M, and  Movahedian A. Increased leukocyte ABCA1 gene expression in post-menopausal women on hormone replacement therapy. Gynecol Endocrinol 2011; 27:701.
51. Matsuura F, Oku H, Koseki M, Sandoval JC, Yuasa-Kawase M, et al. Adiponectin accelerates reverse cholesterol transport by increasing high density lipoprotein assembly in the liver. Biochem Biophys Res Commun 2007; 358:1091–1095.
52. Van Stijn CMW, Kim J, Barish GD, Tietge UJF, Tangirala RK. Adiponectin expression protects against angiotensin II-mediated inflammation and accelerated atherosclerosis. PLoS One 2014; 9:e86404.
53. Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby P. Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci 2006; 110:267.
54. Ridker PM, Wilson PW, Grundy SM. Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? Circulation 2004; 109:2818–2825.
55. Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 2003; 107:671–674.
56. Kriketos AD, Greenfield JR, Peake PW, Furler SM, Denyer GS, Charles-, worth JA, et al. Inflammation, insulin resistance, and adiposity: a study of first-degree relatives of type 2 diabetic subjects. Diabetes Care 2004; 27:2033–2040.
57. Winer JC,Zern TL,Taksali SE,Dziura J, Dziura J, Cali AM, Wollschlager M, et al. Adiponectin in childhood and adolescent obesity and its association with inflammatory markers and components of the metabolic syndrome. J Clin Endocrinol Metab 2006; 91:4415–4423.
58. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009; 29:313–326.
59. Wulster-Radcliffe MC, Ajuwon KM, Wang J, Christian JA, Spurlock ME. Adiponectin differentially regulates cytokines in porcine macrophages. Biochem Biophys Res Commun 2004; 316:924–929.
60. Yamaguchi N, Argueta JG, Masuhiro Y, Kagishita M, Nonaka K,, Saito T, et al. Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett 2005; 579:6821–6826.
61. Xu A ,  Vanhoutte PM. Adiponectin and adipocyte fatty acid binding protein in the pathogenesis of cardiovascular disease. Am J Physiol Heart Circ Physiol 2012; 302:H1231–H1240.
62. Ajuwon KM, Spurlock ME. Adiponectin inhibits LPS-induced NF-κB activation and IL-6 production and increases PPARγ2 expression in adipocytes. Am J Physiol - Regul Integr Comp Physiol 2005; 288:R1220–R1225.
63. Lovren F, Pan Y, Quan A, Szmitko PE, Singh KK, Shukla PC, et al. Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages. Am J Physiol Heart Circ Physiol 2010; 299:H656–H663.
64. Esposito K, PontiUo A, Giugliano  F, Giugliano G, Marfella R, Nicoletti G,et al. Association  of  low  interleukin-10  levels with  the metabolic  syndrome in  obese  women. J Clin Endocrinol Metab 2003; 88:1055–1058.
65. Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, et al. Proinflammatory phenotype of perivas- cular adipocytes: influence of high-fat feeding. Circ Res  2009; 104:541–549.
66. Marchesi C, Ebrahimian T, Angulo O, Paradis P, Schiffrin EL. Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension 2009; 54:1384–1392.
67. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 2001; 108:1341–1348.
68. Li H, Förstermann U. Nitric oxide in the pathogenesis of vascular disease. J Pathol 2000; 190:244–254.
69. Han SH, Quon MJ, Koh KK. Reciprocal relationships between abnormal metabolic parameters and endothelial dysfunction. Curr Opin Lipidol 2007; 18:58–65.
70. Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta 2007; 380:24–30.
71. Franchini M, Targher G, Montagnana M, Lippi G. The metabolic syndrome and the risk of arterial and venous thrombosis. Thromb Res 2008; 122:727–735.
72. Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory  effect  of  C-reactive  protein  on  human  endothelial  cells. Circulation 2000; 102:2165–2168.
73. Szmitko PE, Wang C-H, Weisel RD, Almeida JR de, Anderson TJ, Verma S. New markers of inflammation and endothelial cell activation part I. Circulation 2003; 108:1917–1923.
74. Armutcu F, Ataymen M, Atmaca H, Gurel A. Oxidative stress markers, C-reactive protein and heat shock protein 70 levels in subjects with metabolic syndrome.Clin Chem Lab Med 2008; 46:785-790.
75. Palmieri VO, Grattagliano I, Portincasa P, Palasciano G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J Nutr 2006; 136:3022–3026.
76. Chen SJ, Yen CH, Huang YC, Lee BJ, Hsia S, Lin PT. Relationships between inflammation, adiponectin, and oxidative stress in metabolic syndrome. PLoS One 2012; 7:e45693.
77. Ando K, Fujita T. Metabolic syndrome and oxidative stress. Free Radic Biol Med 2009; 47:213–218.
78. Noh H, Ha H. Reactive Oxygen Species and Oxidative Stress. In: Lai KN, Tang SCW, editors. Contributions to Nephrology. Basel: KARGER; 2011.p.102–112.
79. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114:1752–1761.
80. He Q-R, Yu T, Li P. Association of oxidative stress and serum adiponectin in patients with metabolic syndrome. Sichuan Da Xue Xue Bao Yi Xue Ban 2009; 40:623–627.
81. Ouedraogo R, Wu X, Xu S-Q, Fuchsel L, Motoshima H, Mahadev K, et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes 2006; 55:1840–1846.
82. Plant S, Shand B, Elder P, Scott R. Adiponectin attenuates endothelial dysfunction induced by oxidised low-density lipoproteins. Diabetes Vasc Dis Res Off J Int Soc Diabetes Vasc Dis 2008; 5:102–108.
83. Mahadev K,Wu X, Donnelly S, Ouedraogo R, Eckhart AD, Goldstein BJ. Adiponectin inhibits vascular endothelial growth factor-induced migration of human coronary artery endothelial cells. Cardiovasc Res 2008; 78:376–384.
84. Kim J-E, Song SE, Kim Y-W, Kim J-Y, Park S-C, Park Y-K, et al. Adiponectin inhibits palmitate-induced apoptosis through suppression of reactive oxygen species in endothelial cells: involvement of cAMP/protein kinase A and AMP-activated protein kinase. J Endocrinol 2010; 207:35–44.
85. Basati G, Pourfarzam M, Movahedian A, Samsamshariat SZ, Sarrafzadegan N. Reduced plasma adiponectin levels relative to oxidized low density lipoprotein and nitric oxide in coronary artery disease patients. Clinics 2011; 66:1129–1135.
86. Jacobsen DW. Hyperhomocysteinemia and oxidative stress time for a reality check? Arterioscler Thromb Vasc Biol 2000; 20:1182–1184.
87. Simão TNC, Lozovoy MAB, Simão ANC, Oliveira SR, Venturini D, Morimoto HK, et al. Reduced-energy cranberry juice increases folic acid and adiponectin and reduces homocysteine and oxidative stress in patients with the metabolic syndrome. Br J Nutr 2013; 110:1885–1894.
88. Tavilani H, Esfahani M. Gene polymorphism and hypertension. ARYA Atheroscler 2012; 0:S212–S216.
89. Schillaci G, Pirro M, Vaudo G, Mannarino MR, Savarese G, Pucci G, et al. Metabolic syndrome is associated with aortic stiffness in untreated essential. Hypertension 2005; 45:1078–1082.
90. Liao D, Arnett DK, Tyroler HA, Riley WA, Chambless LE, Szklo M, et al. Arterial stiffness and the development of hypertension the ARIC study. Hypertension 1999; 34:201–206.
91. Lee AT, Cerami A. Role of glycation in aging. Ann N Y Acad Sci 1992; 663:63–70.
92. Querejeta R, Varo N, López B, Larman M, Artiñano E, Etayo JC, et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation 2000; 101:1729–1735.
93. Tsai W-C, Lin C-C, Chen J-Y, Huang Y-Y, Lee C-H, Li W-T, et al. Association of adiponectin with procollagen type I carboxyterminal propeptide in non-diabetic essential hypertension. Blood Press 2008; 17:233–238.
94. Snijder MB, Flyvbjerg A, Stehouwer CDA, Frystyk J, Henry RMA, Seidell JC, et al. Relationship of adiposity with arterial stiffness as mediated by adiponectin in older men and women: the Hoorn Study. Eur J Endocrinol 2009; 160:387–395.
95. Chow W-S, Cheung BMY, Tso AWK, Xu A, Wat NMS, Fong CHY, et al. Hypoadiponectinemia as a predictor for the development of hypertension A 5-year prospective study. Hypertension 2007; 49:1455–1461.
96. Brasier AR, Recinos A 3rd, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 2002; 22:1257–1266.
97. De Kloet AD, Krause EG, Woods SC. The renin angiotensin system and the metabolic syndrome. Physiol Behav 2010; 100:525–534.
98. Vaziri ND, Rodríguez-Iturbe B. Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nat Clin Pract Nephrol 2006; 2:582–593.
99. Iwashima Y, Katsuya T, Ishikawa K, Ouchi N, Ohishi M, Sugimoto K, et al. Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension 2004; 43:1318–1323.
100. Kazumi T, Kawaguchi A, Sakai K, Hirano T, Yoshino G. Young men with high-normal blood pressure have lower serum adiponectin, smaller LDL size, and higher elevated heart rate than those with optimal blood pressure. Diabetes Care 2002; 25:971–976.
101. Kok MGM, Meijers JCM, Pinto-Sietsma S-J. Individuals with coronary artery disease at a young age and features of the metabolic syndrome have an increased prothrombotic potential. Thromb Haemost 2014; 111:458-464.
102. Russo I. The prothrombotic tendency in metabolic syndrome: focus on the potential mechanisms involved in impaired haemostasis and fibrinolytic balance. Scientifica (Cairo) 2012; 2012:525374.
103. Mauras N, Delgiorno C, Kollman C, Bird K, Morgan M, Sweeten S, et al. Obesity without established comorbidities of the metabolic syndrome is associated with a proinflammatory and prothrombotic state, even before the onset of puberty in children. J Clin Endocrinol Metab 2010; 95:1060–1068.
104. Natal C, Restituto P, Inigo C, Colina I, Diez J, Varo N. The proinflammatory mediator CD40 ligand is increased in the metabolic syndrome and modulated by adiponectin. J Clin Endocrinol Metab 2008; 93:2319–2327.
105.  Gokulakrishnan K, Deepa R, Mohan V, Gross MD. Soluble P-selectin and CD40L levels in subjects with prediabetes, diabetes mellitus, and metabolic syndrome—the chennai urban rural epidemiology study. Metabolism 2006; 55:237–242.
106. Serebruany VL, Malinin A, Ong S, Atar D. Patients with metabolic syndrome exhibit higher platelet activity than those with conventional risk factors for vascular disease. J Thromb Thrombolysis 2008; 25:207–213.
107. Restituto P, Colina I, Varo JJ, Varo N. Adiponectin diminishes platelet aggregation and sCD40L release. Potential role in the metabolic syndrome. Am J Physiol - Endocrinol Metab 2010; 298:E1072–E1077.
108. Kato H, Kashiwagi H, Shiraga M, Tadokoro S, Kamae T, Ujiie H, et al. Adiponectin acts as an endogenous antithrombotic factor. Arter Thromb Vasc Biol 2006; 26:224–230.
109. Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 2000; 342:1792–1801.
110. Alessi M-C, Juhan-Vague I. PAI-1 and the metabolic syndrome links, causes, and consequences. Arterioscler Thromb Vasc Biol 2006; 26:2200–2207.
111. Corgosinho FC, Piano A de, Sanches PL, Campos RM, Silva PL, Carnier J, et al. The role of PAI-1 and adiponectin on the inflammatory state and energy balance in obese adolescents with metabolic syndrome. Inflammation 2012; 35:944–951.
112. Maruyoshi H, Kojima S, Funahashi T, Miyamoto S, Hokamaki J, Soejima H, et al. Adiponectin is inversely related to plasminogen activator inhibitor type 1 in patients with stable exertional angina. Thromb Haemost 2004; 91:1026-1030.
113. Skurk  T,   van Harmelen V ,   Lee YM,   Wirth A, Haune H. Relationship between IL-6, leptin and adiponectin and variables of fibrinolysis in overweight and obese hypertensive patients. horm metab res. 2002; 34:659–663.
114. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A consensus statement from the international diabetes federation. Diabet Med J Br Diabet Assoc 2006; 23:469–480.
115. Chiu T-Y, Chen C-Y, Chen S-Y, Soon C-C, Chen J-W. Indicators associated with coronary atherosclerosis in metabolic syndrome. Clin Chim Acta 2012; 413:226–231.
116. Ekmekci H, Ekmekci OB. The role of adiponectin in atherosclerosis and thrombosis. Clin Appl Thromb 2006; 12:163–168.
117. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001; 103:1057–1063.
118. Furukawa K, Hori M, Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, et al. Adiponectin down-regulates acyl-coenzyme A:cholesterol acyltransferase-1 in cultured human monocyte-derived macrophages. Biochem Biophys Res Commun 2004; 317:831–836.
119. Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun 2004; 323:630–635.
120. Watanabe N, Ikeda U. Matrix metalloproteinases and atherosclerosis. Curr Atheroscler Rep 2004; 6:112–120.
121. Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 2004; 109:2046–2049.
122. Hopkins TA, Ouchi N, Shibata R, Walsh K. Adiponectin actions in the cardiovascular system. Cardiovasc Res 2007; 74:11–18.
123. Yamaoka K, Tango T. Effects of lifestyle modification on metabolic syndrome: a systematic review and meta-analysis. BMC Med 2012; 10:138.
124. Garaulet M, Hernandez-Morante JJ, Lujan J, Tebar FJ, Zamora S. Relationship between fat cell size and number and fatty acid composition in adipose tissue from different fat depots in overweight/obese humans. Int J Obes 2005 2006; 30:899–905.
125. Tahergorabi Z, Rashidi B, Khazaei M. Ghrelin does not alter aortic intima-media thickness and adipose tissue characteristics in control and obese mice. Iran J Basic Med Sci 2013; 16:942–945.
126. Bahceci M, Gokalp D, Bahceci S, Tuzcu A, Atmaca S, Arikan S. The correlation between adiposity and adiponectin, tumor necrosis factor alpha, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J Endocrinol Invest 2007; 30:210–214.
127. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001; 86:3815–3819.
128. Mavri A, Poredoš P, Suran D, Gaborit B, Juhan-Vague I, Poredoš P. Effect of diet-induced weight loss on endothelial dysfunction: early improvement after the first week of dieting. Heart Vessels 2011; 26:31–38.
129. Matsubara M, Maruoka S, Katayose S. Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. Eur J Endocrinol Eur Fed Endocr Soc 2002; 147:173–180.
130. Kobayashi H, Ouchi N, Kihara S, Walsh K, Kumada M, Abe Y, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res 2004; 94:e27–e31.
131. Xydakis AM, Case CC, Jones PH, Hoogeveen RC, Liu M-Y, Smith EO, et al. Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight loss through caloric restriction. J Clin Endocrinol Metab 2004; 89:2697–2703.
132. Polak J, Kovacova Z, Jacek M, Klimcakova E, Kovacikova M, Vitkova M, et al. An increase in plasma adiponectin multimeric complexes follows hypocaloric diet-induced weight loss in obese and overweight pre-menopausal women. Clin Sci 2007; 112:557.
133. Neschen S, Morino K, Rossbacher JC, Pongratz RL, Cline GW, Sono S, et al. Fish oil regulates adiponectin secretion by a peroxisome proliferator–activated receptor-γ–dependent mechanism in mice. Diabetes 2006; 55:924–928.
134. Qi L, Rimm E, Liu S, Rifai N, Hu FB. Dietary glycemic index, glycemic load, cereal fiber, and plasma adiponectin concentration in diabetic men. Diabetes Care 2005; 28:1022–1028.
135. Yannakoulia M, Yiannakouris N, Bluher S, Matalas AL, Klimis-Zacas D, Mantzoros CS. Body fat mass and macronutrient intake in relation to circulating soluble leptin receptor, free leptin index, adiponectin, and resistin concentrations in healthy humans. Clin Endocrinol Metab 2003; 88:1730–1736.
136. Kim SH, Lee SH, Ahn KY, Lee DH, Suh YJ, Cho SG, et al. Effect of lifestyle modification on serum chemerin concentration and its association with insulin sensitivity in overweight and obese adults with type 2 diabetes. Clin Endocrinol (Oxf) 2014; 80:825–833.
137. Bradley RL, Jeon JY, Liu F-F, Maratos-Flier E. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am J Physiol Endocrinol Metab 2008; 295:E586–594.
138. Matsuzawa Y. The role of fat topology in the risk of disease. Int J Obes 2008; 32:S83–92.
139. Ross R, Janssen I, Dawson J, Kungl A-M, Kuk JL, Wong SL, et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes Res 2004; 12:789–798.
140. Irwin ML, Yasui Y, Ulrich CM, Bowen D, Rudolph RE, Schwartz RS, et al. Effect of exercise on total and intra-abdominal body fat in postmenopausal women: a randomized controlled trial. JAMA J Am Med Assoc 2003; 289:323–330.
141. Kelly KR, Navaneethan SD, Solomon TPJ, Haus JM, Cook M, Barkoukis H, et al. Lifestyle-induced decrease in fat mass improves adiponectin secretion in obese adults. Med Sci Sports Exerc 2014; 46:920–926.
142. Ferguson MA, White LJ, McCoy S, Kim H-W, Petty T, Wilsey J. Plasma adiponectin response to acute exercise in healthy subjects. Eur J Appl Physiol 2004; 91:324–329.
143. Punyadeera C, Zorenc AHG, Koopman R, McAinch AJ, Smit E, Manders R, et al. The effects of exercise and adipose tissue lipolysis on plasma adiponectin concentration and adiponectin receptor expression in human skeletal muscle. Eur J Endocrinol Eur Fed Endocr Soc 2005; 152:427–436.
144. Bobbert T, Wegewitz U, Brechtel L, Freudenberg M, Mai K, Möhlig M, et al. Adiponectin oligomers in human serum during acute and chronic exercise: relation to lipid metabolism and insulin sensitivity. Int J Sports Med 2007; 28:1–8.
145. Kraemer RR, Castracane VD. Exercise and humoral mediators of peripheral energy balance: ghrelin and adiponectin. Exp Biol Med Maywood NJ 2007; 232:184–194.
146. Saunders TJ, Palombella A, McGuire KA, Janiszewski PM, Després J-P, Ross R. Acute exercise increases adiponectin levels in abdominally obese men. J Nutr Metab 2012; 2012:148729.
147. Kelly KR, Blaszczak A, Haus JM, Patrick-Melin A, Fealy CE, Solomon TPJ, et al. A 7-d exercise program increases high-molecular weight adiponectin in obese adults. Med Sci Sports Exerc 2012; 44:69–74.
148. Numao S, Katayama Y, Hayashi Y, Matsuo T, Tanaka K. Influence of acute aerobic exercise on adiponectin oligomer concentrations in middle-aged abdominally obese men. Metabolism 2011; 60:186–194.
149. Blüher M, Bullen JW Jr, Lee JH, Kralisch S, Fasshauer M, Klöting N, et al. Circulating adiponectin and expression of adiponectin receptors in human skeletal muscle: associations with metabolic parameters and insulin resistance and regulation by physical training. J Clin Endocrinol Metab 2006; 91:2310–2316.
150. Oberbach A, Tönjes A, Klöting N, Fasshauer M, Kratzsch J, Busse MW, et al. Effect of a 4 week physical training program on plasma concentrations of inflammatory markers in patients with abnormal glucose tolerance. Eur J Endocrinol Eur Fed Endocr Soc 2006; 154:577–585.
151. Akbarpour M. The effect of aerobic training on serum adiponectin and leptin levels and inflammatory markers of coronary heart disease in obese men. Biol Sport 2013; 30:21–27.
152. Golbidi S, Laher I. Exercise induced adipokine changes and the metabolic syndrome. J Diabetes Res 2014; 2014:726861.
153. Takefuji S, Yatsuya H, Tamakoshi K, Otsuka R, Wada K, Matsushita K, et al. Smoking status and adiponectin in healthy Japanese men and women. Prev Med 2007; 45:471–475.
154. Sull JW, Kim HJ, Yun JE, Park EJ, Kim G, Jee SH. Serum adiponectin is associated with smoking status in healthy Korean men. Endocr J 2009; 56:73–78.
155. Kotani K, Hazama A, Hagimoto A, Saika K, Shigeta M, Katanoda K, et al. Adiponectin and smoking status: a systematic review. J Atheroscler Thromb 2012; 19:787–794.
156. Abbasi F, Farin HMF, Lamendola C, McLaughlin T, Schwartz EA, Reaven GM, et al. The relationship between plasma adiponectin concentration and insulin resistance is altered in smokers. J Clin Endocrinol Metab 2006; 91:5002–5007.
157. Andersson K, Arner P. Systemic nicotine stimulates human adipose tissue lipolysis through local cholinergic and catecholaminergic receptors. Int J Obes Relat Metab Disord 2001; 25:1225–1232.
158. Iwashima Y, Katsuya T, Ishikawa K, Kida I, Ohishi M, Horio T, et al. Association of hypoadiponectinemia with smoking habit in men. Hypertension 2005; 45:1094–1100.
159. Tishinsky JM, Dyck DJ, Robinson LE. Chapter One-Lifestyle Factors Increasing Adiponectin Synthesis and Secretion. In: Gerald Litwack, editor. Vitamins & Hormones. Academic Press; 2012. p. 1–30.
160. Yu JG, Javorschi S, Hevener AL, Kruszynska YT, Norman RA, Sinha M, et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 2002; 51:2968–2974.
161. Xu A, Wang H, Hoo RLC, Sweeney G, Vanhoutte PM, Wang Y, et al. Selective elevation of adiponectin production by the natural compounds derived from a medicinal herb alleviates insulin resistance and glucose intolerance in obese mice. Endocrinology 2009; 150:625–633.
162. Mohammadi A, Gholamhoseinian A, Fallah H. Zataria multiflora increases insulin sensitivity and PPARγ gene expression in high fructose fed insulin resistant rats. Iran J Basic Med Sci 2014; 17:263–270.
163. Gómez-Arbeláez D, Lahera V, Oubiña P, Valero-Muñoz M, de Las Heras N, Rodríguez Y, et al. Aged garlic extract improves adiponectin levels in subjects with metabolic syndrome: a double-blind, placebo-controlled, randomized, crossover study. Mediators Inflamm 2013; 2013:285795.
164. Wang A, Liu M, Liu X, Dong LQ, Glickman RD, Slaga TJ, et al. Up-regulation of adiponectin by resveratrol: the essential roles of the Akt/FOXO1 and AMP-activated protein kinase signaling pathways and DsbA-L. J Biol Chem 2011; 286:60–66.
165. Decochez K, Rippley RK, Miller JL, Smet MD, Yan KX, Matthijs Z, et al. A dual PPAR α/γ agonist increases adiponectin and improves plasma lipid rofiles in healthy subjects. Drugs RD 2006; 7:99–110.
166. Phillips SA, Ciaraldi TP, Kong APS, Bandukwala R, Aroda V, Carter L, et al. Modulation of Circulating and adipose tissue adiponectin levels by antidiabetic
therapy. Diabetes 2003; 52:667–674.
167. Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, et al. Peroxisome proliferator–activated receptor (PPAR)α activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue comparison of activation of PPARα, PPARγ, and their combination. Diabetes 2005; 54:3358–3370.
168. Oki K, Koide J, Nakanishi S, Nakashima R, Yamane K. Fenofibrate increases high molecular weight adiponectin in subjects with hypertrigly-ceridemia. Endocr J 2007; 54:431–435.
169. Tian F, Luo R, Zhao Z, Wu Y, Ban D. Blockade of the RAS increases plasma adiponectin in subjects with metabolic syndrome and enhances differen-tiation and adiponectin expression of human preadipocytes. Exp Clin Endocrinol Amp Diabetes 2009; 118:258–265.