1. Gamarra L, Pontuschka WM, Amaro E, Costa-Filho A, Brito G, Vieira E, et al. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe 3 O 4 nanoparticles: An EPR and XRF study. Mater Sci Eng C 2008;28:519-25.
2. Shanehsazzadeh S, Gruettner C, Lahooti A, Mahmoudi M, Allen BJ, Ghavami M, et al. Monoclonal antibody conjugated magnetic nanoparticles could target MUC‐1‐positive cells in vitro but not in vivo. Contrast Media Mol Imaging 2015; 10:225–36.
3. Zhao X, Zhao H, Chen Z, Lan M. Ultrasmall superparamagnetic iron oxide nanoparticles for magnetic resonance imaging contrast agent. J Nanosci Nanotechnol 2014; 14:210-20.
4. Shanehsazzadeh S, Oghabian MA, Allen BJ, Amanlou M, Masoudi A, Daha FJ. Evaluating the effect of ultrasmall superparamagnetic iron oxide nanoparticles for a long-term magnetic cell labeling. J Med Phys 2013; 38:34.
5. Shanehsazzadeh S, Oghabian MA, Lahooti A, Abdollahi M, Haeri SA, Amanlou M, et al. Estimated background doses of [67Ga]-DTPA-USPIO in normal Balb/c mice as a potential therapeutic agent for liver and spleen cancers. Nucl Med Commun 2013; 34:915-25.
6. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 2011; 63:24-46.
7. Bagheri-abassi F, Alavi H, Mohammadipour A, Motejaded F. Ebrahimzadeh-bideskan, A., The effect of silver nanoparticles on apoptosis and dark neuron production in rat hippocampus. Iran J Basic Med Sci 2015,18, 644-648.
8. Mayelifar K, Taheri AR, Rajabi O, Sazgarnia A. Ultraviolet B efficacy in improving antileishmanial effects of silver nanoparticles. Iran J Basic Med Sci 2015, 18, 677-683.
9. Lind K, Kresse M, Debus NP, Müller RH. A novel formulation for superparamagnetic iron oxide (SPIO) particles enhancing MR lymphography: comparison of physicochemical properties and the in vivo behaviour. J Drug Target 2002;10:221-30.
10. Mahmoudi M, Simchi A, Imani M, Hafeli UO. Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery. J Phys Chem C 2009; 113:8124-31.
11. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003; 2:214-21.
12. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53:283-318.
13. Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol 2004;5:981-6.
14. Ni F, Jiang L, Yang R, Chen Z, Qi X, Wang J. Effects of PEG length and iron oxide nanoparticles size on reduced protein adsorption and non-specific uptake by macrophage cells. J Nanosci Nanotechnol 2012;12:2094-100.
15. Ahmad T, Bae H, Rhee I, Chang Y, Lee J, Hong S. Particle size dependence of relaxivity for silica-coated iron oxide nanoparticles. Curr Appl Phys 2012;12:969-74.
16. Wang C, Chen J, Talavage T, Irudayaraj J. Gold Nanorod/Fe3O4 Nanoparticle “Nano‐Pearl‐Necklaces” for Simultaneous Targeting, Dual‐Mode Imaging, and Photothermal Ablation of Cancer Cells. Angew Chem 2009;121:2797-801.
17. LaConte LE, Nitin N, Zurkiya O, Caruntu D, O'Connor CJ, Hu X, et al. Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity. J Magn Reson Imaging 2007;26:1634-41.
18. Tromsdorf UI, Bigall NC, Kaul MG, Bruns OT, Nikolic MS, Mollwitz B, et al. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett 2007;7:2422-7.
19. Duan H, Kuang M, Wang X, Wang YA, Mao H, Nie S. Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J Phys Chem C 2008;112:8127-31.
20. Thanh NT. Magnetic nanoparticles: from fabrication to clinical applications: CRC press; 2012.
21. Khameneh B, Halimi V, Jaafari MR, Golmohammadzadeh S. Safranal-loaded solid lipid nanoparticles: evaluation of sunscreen and moisturizing potential for topical applications. Iran J Basic Med Sci 2015;18:58-63.
22. Lahooti A, Shanehsazzadeh S, Oghabian M A, Allen BJ. In Assessment of human effective absorbed dose of Tc-99m-USPIO based on biodistribution rat data. J Label Compd Rad 2013; S258-S258.
23. Jahanbakhsh R, Atyabi F, Shanehsazzadeh S, Sobhani Z, Adeli M, Dinarvand R. Modified Gadonanotubes as a promising novel MRI contrasting agent. Daru 2013;21:53-61.
24. Omid H, Oghabian MA, Ahmadi R, Shahbazi N, Hosseini HRM, Shanehsazzadeh S, et al. Synthesizing and staining manganese oxide nanoparticles for cytotoxicity and cellular uptake investigation. BBA-Gen Subjects 2014;1840:428-33.
25. Müller-Bierl B, Louis O, Fierens Y, Buls N, Luypaert R, de Mey J. Cylinders or walls? A new computational model to estimate the MR transverse relaxation rate dependence on trabecular bone architecture. Magn Reson Mater Phys Biol Med 2014;27:349-61.
26. Galassi F, Brujic D, Rea M, Lambert N, Desouza N, Ristic M. Fast and accurate localization of multiple RF markers for tracking in MRI-guided interventions. Magn Reson Mater Phys Biol Med 2015;28:33-48.
27. Marshall I, Jansen MA, Tao Y, Merrifield GD, Gray GA. Application of kt-BLAST acceleration to reduce cardiac MR imaging time in healthy and infarcted mice. Magn Reson Mater Phys Biol Med 2014;27:201-10.
28. Wang Y-XJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001;11:2319-31.