The effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation

Document Type : Original Article


1 Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia

2 Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia

3 Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia


Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury.
Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of adult Wistar rats after a single dose of bacterial lipopolysaccharide (LPS, Escherichia coli, 1 mg/kg). The ultrastructure of TJs after LPS administration was also investigated. We measured plasma levels of C-reactive protein (CRP), Malondialdehyde (MDA) and CD68 expression and determined the total activity of NO synthase (NOS) in the aortic tissue.
Results:LPS induced a significant decrease of occludin expression accompanied by structural alterations of TJs. Levels of CRP, MDA, CD68 and NOS activity were elevated after LPS injection compared to controls indicating presence of moderate inflammation. Ω-3 PUFA supplementation did not affect occludin expression in treated inflammatory group. However they reduced CRP and MDA concentration and CD68 expression, but conversely, they increased NOS activity compared to inflammatory group.
Conclusion:Our results indicate that a single dose of LPS could have a long-term impact on occludin expression and thus contribute to endothelial barrier dysfunction. 10-day administration of Ω-3 PUFA had partial anti-inflammatory effects on health of rats without any effect on occludin expression.


1. De Nardin E. The role of inflammatory and immunological mediators in periodontitis and cardiovascular disease. Annals of Periodontology. 2001; 6: 30–40.
2. Magrone T, Jirillo E. The impact of bacterial lipopolysaccharides on the endothelial system: pathological consequences and therapeutic countermeasures. Endocr Metab Immune Disord Drug Targets 2011; 11: 310-325.
3. Rubin LL. Endothelial cells: adhesion and tight junctions. Curr Opin Cell Biol. 1992; 4: 830-833.
4. Simionescu N, Simionescu M. Endothelial transport macromolecules: transcytosis and endocytosis. Cell Biology Rev 1991; 25: 5-80.
5. Li Q, Zhang Q, Wang M, Zhao S, Xu G, Li J. n-3 polyunsaturated fatty acids prevent disruption of epithelial barrier function induced by proinflammatory cytokines. Mol Immunol 2008; 45: 1356-1365.
6. Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W, et al. Tight junctions are membrane microdomains. J Cell Sci 2000; 113: 1771-1781.
7. Gumbiner BM. Cell adhesion: tha molecular basis of tissue architecture and morphogenesis. Cell 1996; 84: 345-357.
8. Fanning AS, Mitic LL, Anderson JM. Transmembrane proteins in the tight junction barrier. J Am Soc Nephrol 1999; 10: 1337-1345.
9. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2001; 2: 285-293.
10. Turner JR. Putting the squeeze“ on the tight junction:understanding cytoskeletal regulation. Semin Cell Dev Biol 2000; 11: 301-308.
11. Chai Q, He WQ, Zhou M, Lu H, Fu ZF. Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol 2014; 88: 4698-4710.
12. Hou Y, Wang L, Zhang W, Yang Z, Ding B, Zhu H, et al. Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 2012; 43: 1233-1242.
13. Zhou T, Zhao L, Zhan R, He Q, Tong Y, Tian X, et al. Blood-brain barrier dysfunction in mice induced by lipopolysaccharide is attenuated by dapsone. Biochem Biophys Res Commun 2014; 453:419-424.
14. Rochfort KD, Cummins PM. Cytokine-mediated dysregulation of zonula occludens-1 properties in human brain microvascular endothelium. Microvasc Res 2015; 100: 48-53.
15. Dohgu S, Fleegal-DeMotta MA, Banks WA. Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by luminal microvessel IL-6 and GM-CSF. J Neouroinflammation 2011; 8: 167-178.
16. Eadon MT, Hack BK, Xu C, Ko B, Toback FG, Cunningham PN. Endotoxemia alters tight junction gene and protein expression in the kidney. Am J Renal Physiol 2012; 303: F821-F830.
17. Sheth P, Delos Santos N, Seth A, LaRusso NF, Rao RK. Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBP-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2007; 293:G08-G318.
18. Ambrozova G, Pekarova M, Lojek A. Effect of polyunsaturated fatty acids in the reactive oxigen and nitrogen speciesproduction by raw 254.7 macrophages. Eur J Nutr 2010; 49:133-139.
19. Demaison L, Moreau D. Dietary n-3 polyunsaturated fatty acids and coronary heart disease-related mortality: a possible mechanism of action. Cell Mol Life Sci 2002; 59: 463-477.
20. Das UN. Infection, inflammation, and polyunsaturated fatty acids. Nutrition 2011; 27:1080-1084.
21. Dlugosova K, Okruhlicova L, Mitasikova M, Sotnikova R, Bernatova I, Weisman P, et al. Modulation of connexin-43 by omega-3 fatty acids in the aorta of old spontaneously hypertensive rats. J Physiol Pharmacol 2009a; 60: 63-69.
22. Frimmel K, Vlkovicova J, Sotnikova R, Navarova J, Bernatova I, Okruhlicova L. The effect of omega-3 fatty acids on expression of connexin-40 in wistar rat aorta after lipopolysaccharide administration. J Physiol Pharmacol 2014; 65:83-94.
23. Mézešová L, Jendruchová-Javorková V, Vlkovičová J, Okruhlicová Ľ, Frimmel K, Navarová J, et al. Supplementation with n-3 polyunsaturated fatty acids to lipopolysaccharide-induced rats improved inflammation and functional properties of renal Na,K-ATPase. Nutr Res 2013; 33:772-779.
24. Dlugosova K, Weisman P, Bernatova I, Sotnikova R, Slezak J, Okruhlicova L. Omega-3 fatty acids and atorvastatin affects connexin 43 expression in the aorta of hereditary hypertriglyceridemic rats. Can J Physiol Pharmacol 2009b; 87:1074-1082.
25. Bacova B, Radosinska J, Knezl V, Kolenova L, Weismann P, Navarova J, et al. Omega-3 fatty acids and atorvastatin suppress ventricular fibrillation inducibility in hypertriglyceridemic rat hearts: implication of intercellular coupling protein, connexion-43. J Physiol Pharmacol 2010; 61:717-723.
26. Radosinska J, Bacova B, Bernatova I, Navarova J, Zhukovska A, Shysh A, et al. Myocardial NOS activity and connexion-43 expression in untreated and omega-3 fatty acids-treated spontaneously hypertensive and hereditary hypertriglyceridemic rats. Mol Cell Biochem 2011; 347:163-173.
27. Radosinska J, Bacova B, Knezl V, Benova T, Zurmanova J, Soukup T, et al. Dietary omega-3 fatty acids attenuate myocardial arrhythmogenic factors and propensity of the heart to lethal arrhythmias in a rodent model of human essential hypertension. J Hypertens 2013; 31:1876-1885.
28. Jiang WG, Bryce RP, Horrobin DF, Mansel RE. Regulation of tight junction permeability and occludin expression by polyunsaturated fatty acids. Biochem Biophys Res Commun 1998; 244:414-420.
29. Liu Y, Chen F, Odle J, Lin X, Jacobi SK, Zhu H, et al. Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 gignaling pathways in weaned pigs after LPS challenge. J Nutr 2012; 142:2017-2024.
30. Coquerel D, Kušíková E, Mulder P, Coëffier M, Renet S, Dechelotte P, et al. Omega-3 polyunsaturated fatty acids delay the progression of endotoxemic shock-induced myocardial dysfunction. Inflammation 2013; 36:932-940.
31. Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 1997; 43:1209-1214.
32. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 1990; 186:421-431.
33. Bernatova I, Pechanova O, Babal P, Kyselá S, Stvrtina S, Andriantsitohaina R. Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. Am J Physiol 2002; 282:H942-H948.
34. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248-254.
35. Dlugosová K, Mitasíková M, Bernátová I, Weismann P, Okruhlicová L. Reduced connexion-43 expression in the aorta of prehypertensive rats. Physiol Res 2008; 57:S23-S29.
36. Morris M, Li L. Molecular mechanisms and pathological consequences of endotoxin tolerance and priming. Arch Immunol Ther Exp 2012; 60:13-18.
37. Steib CJ, Hartmann AC, Hesler C, Benesic A, Hennenberg M, Blitzer M, et al. Intraperitoneal LPS amplifies portal hypertension in rat liver fibrosis. Lab Invest 2010; 90:1024-1032.
38. Krueger M, Härting W, Reichenbach A, Bechmann I, Michalski D. Blood-brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions. PLoS ONE 2013; 8:e56419.
39. Wen B, Combes V, Bonhoure A, Weksler BB, Couraud PO, Grau GER. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses. PLoS ONE 2014; 9:e91597.
40. Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 2013; 182:375-387.
41. Abdullah Z, Bayraktutan U. NADPH oxidase mediates TNF-α-evoked in vitro brain barrier dysfunction: roles of apoptosis and time. Mol Cell Neurosci 2014; 61:72-84.
42. Sánchez FA, Rana R, González FG, Iwahashi T, Durán RG, Fulton DJ, et al. Functional significance of cytosolic endothelial nitric-oxide synthase (eNOS). J Biol Chem 2011; 286:30409-30414.
43. Muller B, Kleschyov AL, Gyorgy K, Stoclet JC. Inducible NO synthase activity in blood vessels and heart: new insight into cell origin and consequences. Physiol Res 2000; 49:19-26.
44. Chauhan SD, Seggara G, Vo PA, Macallister RJ, Hobbs AJ, Ahluwalia A. Protection against lipopolysaccharide-induced endothelial dysfunction in resistance and conduit vasculature of iNOS knockout mice. FASEB J 2003; 17:773-775.
45. Kang WS, Tamarkin FJ, Wheeler MA, Weiss RM. Rapid up-regulation of endothelial nitric-oxide synthase in a mouse model of Escherichia coli lipopolysaccharide-induced bladder inflammation. J Pharmacol Exp Ther 2004; 310:452-458.
46. Han X, Fink MP, Yang R, Delude RL. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 2004; 21: 261-270.
47. Leal EC, Manivannan A, Hosoya K, Terasaki T, Cunha-Vaz J, Ambrósio AF, et al. Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy. Invest. Ophthalmol Vis Sci 2007; 48: 5257-5265.
48. Yang S, Chen Y, Deng X, Jiang W, Li B, Fu Z, et al. Hemoglobin-induced nitric oxide synthase overexpression and nitric oxide production contribute to blood-brain barrier disruption in the rat. J Mol Neurosci 2013; 51:352-363.
49. Takizawa Y, Kishimoto H, Kitazato T, Tomita M, Hayashi M. Effects of nitric oxide on mucosal barrier dysfunction during early phase of intestinal ischemia/reperfusion. Eur J Pharm Sci 2011; 42:246-252.
50. Feng Y, Hu L, Xu Q, Yuan H, Ba L, He Y, et al. Cytoprotective role of alpha-1 antitrypsin in vascular endothelial cell under hypoxia/reoxygenation condition. J Cardiovasc Pharmacol 2015; 66:96-107.
51. Molina-Jijón E, Rodríguez-Munoz R, Namorado MC, Pedraza-Chaverri J, Reyes JL. Oxidative stress induces claudin-2 nitration in experimental type 1 diabetic nephropathy. Free Radic Biol Med 2014; 72:162-175.
52. Lochhead JJ, McCaffrey G, Quigley CE, Finch J, DeMarco KM, Nametz N, et al. Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab 2010; 30:1625-1636.
53. Jamaluddin MS, Yan S, Lü J, Liang Z, Yao Q, Chen Ch. Resistin increases monolayer permeability of human coronary artery endothelial cells. PLoS ONE 2013; 8:e84576.
54. Nagasawa K, Chiba H, Fujita H, Kojima T, Saito T, Endo T, et al. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol 2006; 208:123-132.
55. Zhang Y, Li J. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-κβ and myosin light-chain kinase pathways. Biochem Bioph Res Co 2012; 428:321-326.
56. Loustarinen R, Saldeen T. Dietary fish oil decreases superoxide generation by human neutrophils: relation to cyclooxygenase pathway and lysosomal enzyme release. Prostaglandins Leukot Essent Fatty Acids 1996; 55:167-172.
57. Di Nunzio M, Valli V, Bordoni A. Pro- and anti-oxidant effects of polyunsaturated fatty acid supplementation in HepG2 cells. Prostaglandins Leukot Ess Fatty Acids 2011; 85:121-127.
58. Serini S, Fasano E, Piccioni E, Cittadini AR, Calviello G. Dietary n-3 polyunsaturated fatty acids and the paradox of their health benefits and potential harmful effects. Chem Res Toxicol 2011; 24:2093-20103.
59. Calder PC. Dietary modification of inflammation with lipids. Proc Nutr Soc 2002; 61:345-358.
60. Esterbauer H. Cytotoxicity and genotoxicity of lipid oxidation products. Am J Clin Nutr 1993; 57 (Suppl. 5): 779-785.
61. Halvorsen BL, Blomhoff R. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements. Food Nutr Res 2011; 55: doi: 10.3402/fnr.v55i0.5792.
62. Awada M, Soulage CO, Meynier A, Debard C, Plaisancié P, Benoit B, et al. Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells. J Lipid Res 2012; 53: 2069-2080.
63. Gourdin MJ, Ponchau O, Jamart J, De Kock M. Ageing influences the effect of pre-hypoxic administration of clonidine, an alpha2-adrenoceptor agonist, on post-hypoxic vasomotricity. J Physiol Pharmacol 2012; 63: 165-171.
64. Sotnikova R, Okruhlicova L, Dlugosova K, Bernatova I, Bezek Š, Navarova J, et al. Effect of n- 3 PUFA on endothelium-dependent relaxation of the 93 superior mesenteric artery. In: Tribulova N, Okruhlicova L, Slezak J, editors. Proceedings of Experimental Approaches in Basic Research and Diagnostic of Diseases: Tailoring the Treatment. Bratislava: VEDA 2008. pp.127-134.
65. de Lima TM, de Sa Lima L, Scavone C, Curi R. Fatty acids control of nitric oxide production by macrophages. FEBS Lett 2006; 580: 3287-3295.
66. Mullen A, Loscher CE, Roche HM. Anti-inflammatory effects of EPA and DHA are dependent upon time and doseresponse elements associated with LPS stimulation in THP- 1-derived macrophages. J Nutr Biochem 2010; 21: 444-450.
67. Zhang R, Ran HH, Zhang YX, Liu P, Lu CY, Xu Q, et al. Farnesoid X receptor regulates vascular reactivity through nitric oxide mechanism. J Physiol Pharmacol 2012; 63: 367-372.
68. Usami M, Muraki K, Iwamoto M, Ohata A, Matsushita E, Miki A. Effect of eicosapentaenoic acid (EPA) on tight junction permeability in intestinal monolayer cells. Clin Nutr 2001; 20:351-359.
69. Coyne CB, Kelly MM, Boucher RC, Johnson LG. Enhanced epithelial gene transfer by modulation of tight junctions with sodium caprate. Am J Respir Cell Mol Biol 2000; 23:602-609.
70. Roche HM, Terres AM, Black IB, Gibney MJ, Kelleher D. Fatty acids and epithelial permeability: effect of conjugated linoleic acid in Caco-2 cells. Gut 2001; 48: 797-802.
71. Sawai T, Drongowski RA, Lampman RW, Coran AG, Harmon CM. The effect of phospholipids and fatty acids on tight-junction permeability and bacterial translocation. Pediatr Surg Int 2001; 17:269-274.
72. Li Q, Zhang Q, Zhang M, Wang C, Zhu Z, Li N, et al. Effect of n-3 polyunsaturated fatty acids on membrane microdomain localization of tight junction proteins in experimental colitis. FEBS J 2008; 275:411-420.
73. Beguin P, Errachid A, Larondelle Y, Schneider YJ. Effect of polyunsaturated fatty acids on tight junctions in a model of the human intestinal epithelium under normal and inflammatory conditions. Food Funct 2013; 4:923-931.
74. Di Nunzio M, Valli V, Bordoni A. Pro- and anti-oxidant effects of polyunsaturated fatty acid supplementation in HepG2 cells. Prostaglandins Leukot Essent Fatty Acids 2011; 85:121-127.
75. Serini G, Bussolino F, Maione F, Giraudo E. Class 3 semaphorins: physiological vascular normalizing agents for anti-cancer therapy. J Intern Med 2013; 273: 138-155.