1. Shuster LT, Rhodes DJ, Gostout BS, Grossardt BR, Rocca WA. Premature menopause or early menopause: long-term health consequences. Maturitas 2010; 65:161-166.
2. Mahdavian M, Abbassian H. Major cardiovascular risk factors for menopausal and non-menopausal women compared with men of the same age in Mashhad, Iran. J Midwifery Reprod Health 2014; 2:136-142.
3. Kim JK, Levin ER. Estrogen signaling in the cardiovascular system. Nucl Recept Signal 2006; 4: e013.
4. Hsu CC, Ou HC, Lee SD. Effects of exercise training on cardiac mitochondrial apoptosis in ovariectomized rats. FASEB J 2010; 24:601-605.
5. Liou CM, Yang AL, Kuo CH, Tin H, Huang CY, Lee SD. Effects of 17beta‐estradiol on cardiac apoptosis in ovariectomized rats. Cell Biochem Funct 2010; 28:521-528.
6. Bluming AZ, Tavris C. Hormone replacement therapy: real concerns and false alarms. Cancer J 2009; 15:93-104.
7. Chen CL, Weiss NS, Newcomb P, Barlow W, White E. Hormone replacement therapy in relation to breast cancer. Jama 2002; 287:734-741.
8. Mosca L, Collins P, Herrington DM, Mendelsohn ME, Pasternak RC, Robertson RM, et al. Hormone replacement therapy and cardiovascular disease a statement for healthcare professionals from the American Heart Association. Circulation 2001; 104:499-503.
9. Ososki AL, Kennelly EJ. Phytoestrogens: a review of the present state of research. Phytother Res 2003; 17:845-869.
10. Neves VJ, Fernandes T, Roque FR, Soci UPR, Melo SFS, de Oliveira EM. Exercise training in hypertension: Role of microRNAs. World J Cardiol 2014; 6:713.
11. Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 2013; 14:38-48.
12. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5:522-531.
13. Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation 2010; 121:1022-1032.
14. Wang N, Sun LY, Zhang S-C, Wei R, Xie F, Liu J, et al. MicroRNA-23a participates in estrogen deficiency induced gap junction remodeling of rats by targeting GJA1. Int J Biol Sci 2015; 11:390.
15. Abdellatif M. The role of microRNA-133 in cardiac hypertrophy uncovered. Circul Res 2010; 106:16-18.
16. Wang H, Li J, Chi H, Zhang F, Zhu X, Cai J, et al. MicroRNA‐181c targets Bcl‐2 and regulates mitochondrial morphology in myocardial cells. J Cell Mol Med 2015; 19:2084-2097.
17. Irigoyen M-C, Paulini J, Flores LJ, Flues K, Bertagnolli M, Moreira ED, et al. Exercise training improves baroreflex sensitivity associated with oxidative stress reduction in ovariectomized rats. Hypertension 2005; 46:998-1003.
18. Da Silva Jr ND, Fernandes T, Soci U, Monteiro A, Phillips MI, de Oliveira EM. Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Med Sci Sports Exerc 2012; 44:1453-1462.
19. Lv H, Sun Y, Zhang Y. MiR-133 is involved in estrogen deficiency-induced osteoporosis through modulating osteogenic differentiation of mesenchymal stem cells. Med Sci Monit 2015; 21:1527-1534.
20. Klinge CM. Estrogen regulation of microRNA expression. Curr Genom 2009; 10:169.
21. Kataoka M, Wang D-Z. Non-coding RNAs including miRNAs and lncRNAs in cardiovascular biology and disease. Cells 2014; 3:883-898.
22. Boštjančič E, Zidar N, Štajer D, Glavač D. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 2010; 115:163-169.
23. Zhao H, Li M, Li L, Yang X, Lan G, Zhang Y. MiR-133b is down-regulated in human osteosarcoma and inhibits osteosarcoma cells proliferation, migration and invasion, and promotes apoptosis. PLoS One 2013; 8:e83571.
24. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007; 13:613-618.
25. He B, Xiao J, Ren AJ, Zhang YF, Zhang H, Chen M, et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci 2011; 18:22.
26. Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 2007; 120:3045-3052.
27. Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1,-133 and-206 in cell development and disease. World J Biol Chem 2015; 6:162.
28. Xiao-Ming Y. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res 2000; 10:161-167.
29. Thomadaki H, Scorilas A. BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci 2006; 43:1-67.
30. Pasiakos SM, McClung JP. miRNA analysis for the assessment of exercise and amino acid effects on human skeletal muscle. Adv Nutr 2013; 4:412-417.
31. Wang N, Zhou Z, Liao X, Zhang T. Role of microRNAs in cardiac hypertrophy and heart failure. IUBMB life 2009; 61:566-571.
32. Cheng SM, Ho TJ, Yang AL, Chen IJ, Kao CL, Wu FN, et al. Exercise training enhances cardiac IGFI-R/PI3K/Akt and Bcl-2 family associated pro-survival pathways in streptozotocin-induced diabetic rats. Int J Cardiol 2013; 167:478-485.
33. Huang CY, Yang AL, Lin YM, Wu FN, Lin JA, Chan YS, et al. Anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts. J Appl Physiol 2012; 12:883-891.